
From Interpreting
C Extensions to Compiling Them
Benoit Daloze

Who am I?

Benoit Daloze

Mastodon: @eregon@ruby.social
Twitter: @eregontp
GitHub: @eregon

Website: https://eregon.me

• TruffleRuby lead at Oracle Labs, Zurich

• Worked on TruffleRuby since 2014

• PhD on parallelism in dynamic languages

• Maintainer of ruby/spec and ruby/setup-ruby

• CRuby (MRI) committer

2 Copyright © 2024, Oracle and/or its affiliates

https://eregon.me

TruffleRuby

• A high-performance Ruby implementation

• Uses the JIT Compiler

• Targets full compatibility with CRuby 3.2, including C extensions
e.g. Mastodon and Discourse can run on TruffleRuby

• GitHub: oracle/truffleruby, Twitter: @TruffleRuby, Mastodon: @truffleruby@ruby.social
Website: https://graalvm.org/ruby

3 Copyright © 2024, Oracle and/or its affiliates

https://graalvm.org/ruby

Why does Ruby have C Extensions?

4 Copyright © 2024, Oracle and/or its affiliates

C Extensions

Two main purposes:
• bindings to C libraries, e.g. zlib, openssl, mysql2, pg

Alternative: the ffi gem (around 1100 gems depend on ffi)
But ffi is impractical if library headers use lots of macros

• performance, e.g. json, msgpack
Sort of discouraged these days, better to write Ruby and use a JIT.
Also, TruffleRuby executes Ruby code much faster

Also known as native extensions, so not just C but C++, Rust, Go, etc.

5 Copyright © 2024, Oracle and/or its affiliates

C Extensions Usage

Native extensions are used in many gems, often no pure-Ruby replacement:
• 9 out of top 100 gems have a native extension (9%)

69 out of top 1000 gems have a native extension (7%)
416 out of top 10000 gems have a native extension (4%)

• Counting gems having a transitive runtime dependency on a native extension, excluding ffi:
28 out of top 100 gems depend on a gem with a native extension (28%)
295 out of top 1000 gems depend on a gem with a native extension (30%)
4621 out of top 10000 gems depend on a gem with a native extension (46%)

• The same but also excluding json and racc (they have a pure-Ruby fallback):
24 out of top 100 gems depend on a gem with a native extension (24%)
281 out of top 1000 gems depend on a gem with a native extension (28%)
4276 out of top 10000 gems depend on a gem with a native extension (43%)

• More complicated for JRuby since some gems have both native & jruby extensions

6 Copyright © 2024, Oracle and/or its affiliates

C Extensions API Compatibility

From https://eregon.me/rubyspec-stats/, 2024-04-26

7 Copyright © 2024, Oracle and/or its affiliates

https://eregon.me/rubyspec-stats/

Various Ways to Implement C Extensions

8 Copyright © 2024, Oracle and/or its affiliates

Truffle

• A framework to build high-performance languages easily

• Get a JIT compiler for free by writing an AST interpreter or bytecode interpreter!

• The GraalVM compiler is able to partial evaluate a Truffle language’s AST/bytecode, which
produces efficient machine code specific to the language method being compiled.

• No need to duplicate logic between the interpreter and JIT compiler, which is a problem that
most JIT compilers have

9 Copyright © 2024, Oracle and/or its affiliates

2014: Initial prototype using TruffleC

TruffleC interprets and JIT compiles C code!

Why not simply using gcc/clang?
• To have freedom of representation and e.g. use a Ruby object to

represent a C struct

• For performance, because the GraalVM JIT compiles both C and
Ruby it can inline through both languages!

10 Copyright © 2024, Oracle and/or its affiliates

The Impact of Inlining Between C and Ruby

From https://chrisseaton.com/truffleruby/cext/

11 Copyright © 2024, Oracle and/or its affiliates

https://chrisseaton.com/truffleruby/cext/

2016: Sulong, the successor of TruffleC

• TruffleC parsed C code, which is quite slow.

• Sulong parses bitcode (LLVM IR), faster because binary format.

• Sulong uses clang to compile from C to bitcode.

• So it works not only for C but C++ too.

• No longer a prototype and working for bigger C extensions.

12 Copyright © 2024, Oracle and/or its affiliates

Freedom of Representation

Why not simply using gcc/clang and run the code natively?

To have freedom of representation and e.g. storing Ruby objects in C long variables and avoiding
any handles or wrappers!

// From ruby.h
typedef unsigned long VALUE;

// In some C extension
VALUE my_method(VALUE obj) {

VALUE foo = obj;
// foo is actually a Ruby object, which is a Java object!
// The JVM GC can still move that Java object, no problem.
...

}

13 Copyright © 2024, Oracle and/or its affiliates

Freedom of Representation

Redirecting accesses to C structs:

// From ruby.h
struct RBasic {

VALUE flags;
const VALUE klass;

};

// In some C extension
VALUE my_method(VALUE obj) {

// Normally ->klass would force RBASIC() to return a native struct.
// But with TruffleC/Sulong, this is actually the same as:
// polyglot_read_member(RBASIC(obj), "klass")
VALUE class_of_object = RBASIC(obj)->klass;
...

}

14 Copyright © 2024, Oracle and/or its affiliates

Freedom of Representation
VALUE class_of_object = RBASIC(obj)->klass;

On TruffleRuby, RBASIC(obj) returns a Ruby object, which implements:

Called from the RBASIC C macro
def RBASIC(object)

Truffle::CExt::RBasic.new(object)
end

class Truffle::CExt::RBasic
def initialize(object)
@object = object

end

def polyglot_read_member(name)
raise unless name == 'klass'
Primitive.metaclass(@object) # either .class or .singleton_class

end
end

15 Copyright © 2024, Oracle and/or its affiliates

Inline Caches in Sulong AST nodes
VALUE my_method(VALUE obj) {

// rb_funcall() in CRuby uses a global cache (no inline cache),
// so it is still at least one hashtable lookup (slow).
// But with Sulong we have an inline cache here and only need
// to check that obj.class is the same as the one seen before.
// The AST nodes of Sulong and TruffleRuby are mixed and inlined!
rb_funcall(obj, rb_intern("foo"), 0);

}

16 Copyright © 2024, Oracle and/or its affiliates

The Need for Handles

• Having Ruby objects in C local variables or representing C structs is really cool

• But there are cases where a Ruby object is passed to a system library (e.g. libssl)

• That means we need handles, i.e. a way to associate a native pointer to a Ruby object

• We want to avoid handles because they cause extra indirections and extra cleanup

• Initially we change C extensions to create handles explicitly, but it does not scale

• So Sulong gains the toNative()/asPointer() interop messages to ask a handle
automatically when needed. This way we only create handles where needed, and most objects
passing through C extensions do not need a handle.

17 Copyright © 2024, Oracle and/or its affiliates

2024: Running C extensions natively

• Compile C/C++ code with the system toolchain (gcc/clang)

• Migrated from running C extensions on Sulong to natively (as machine code)

• libtruffleruby.so is still run on Sulong

• Faster startup (no need to parse bitcode), no warmup (no need to JIT compile C extensions)

• Able to run large extensions like grpc (never worked on Sulong)

• But handles are needed for every VALUE variable in C extensions code

• No more freedom of representation

• No more Ruby + C inlining and no more Sulong AST inline caches in C code

18 Copyright © 2024, Oracle and/or its affiliates

C Extensions API structs after running natively

• struct RBasic { flags, klass }, RBASIC(obj)
Replacement: RBASIC_CLASS(), RBASIC_FLAGS(), RBASIC_SET_FLAGS()

• struct rb_io_t { fd, mode, ... }, struct RFile { rb_io_t *fptr }
Single native allocation for both, when requested, only some fields supported.
Replacement: rb_io_descriptor(VALUE io), rb_io_mode(VALUE io), etc
rb_io_t deprecated since https://bugs.ruby-lang.org/issues/19057

• struct rb_encoding { name, ... }
Native allocation when requested, only some fields supported.

19 Copyright © 2024, Oracle and/or its affiliates

https://bugs.ruby-lang.org/issues/19057

Inline Caches with Macros: rb_intern()

From ruby.h, simplified:

#define rb_intern(str)
(

__builtin_constant_p(str) ?
__extension__ ({

static ID inline_cache;
(inline_cache ?

inline_cache :
inline_cache = rb_intern(str));

})
:
rb_intern(str)

)

rb_funcall(obj, rb_intern("foo"), 0);
rb_funcall(obj, rb_intern("bar"), 0);

20 Copyright © 2024, Oracle and/or its affiliates

Inline Caches with Macros: rb_funcall()
Illustration of an idea:

struct rb_funcall_cache {
VALUE klass;
method* resolved_method;

};

#define rb_funcall(recv, method_id, argc, ...)
__extension__ ({

static struct rb_funcall_cache cache;
method* m = (rb_class_of(recv) == cache.klass ?

cache.resolved_method :
lookup_method(recv, method_id, &cache));

rb_funcall_cached(recv, m, argc, __VA_ARGS__);
})

rb_funcall(obj, rb_intern("foo"), 0);
rb_funcall(obj, rb_intern("bar"), 0);

21 Copyright © 2024, Oracle and/or its affiliates

TruffleRuby C Extensions History: Interpreting, JIT, Compiling

From Interpreting C Extensions to Compiling Them

2014 Initial prototype using TruffleC.
TruffleC interprets and JIT compiles C code!

2016 Sulong, the successor of TruffleC.
Sulong interprets and JIT compiles LLVM bitcode!

2024 Running C extensions natively.
Compiling C code (AOT) with the system toolchain (gcc/clang).

22 Copyright © 2024, Oracle and/or its affiliates

C Extensions API: The Good & Bad Parts

23 Copyright © 2024, Oracle and/or its affiliates

C Extensions API: The Good Parts

• VALUE: pretty much an opaque pointer, makes it possible to use handles even though it was
not designed as such!

• functions: great, can just reimplement them differently, works well.

• macros: can change them but changing any of them means not able to reuse extensions
precompiled for CRuby. Also need to maintain a diff on top of CRuby headers.

24 Copyright © 2024, Oracle and/or its affiliates

C Extensions API: The Bad Parts

• Still a few struct, though many struct stopped being exposed

• VALUE* RARRAY_PTR(ary), forces a flat native Array represenation

• char* RSTRING_PTR(str), causes extra copying from byte[] to char*

• GC semantics, marker functions for RTypedData/RData: hard & expensive to emulate

Actually much better than CPython API which exposes way too many structs (so a new C API is
needed for Python: HPy).

25 Copyright © 2024, Oracle and/or its affiliates

Benchmarks

26 Copyright © 2024, Oracle and/or its affiliates

Benchmark Configurations

All on [x86_64-linux], measuring peak performance, i.e., after enough warmup:
• CRuby: ruby 3.3.1 (2024-04-23 revision c56cd86388) +YJIT

• Sulong: truffleruby 23.1.2, like ruby 3.2.2, Oracle GraalVM JVM

• LibFFI: TruffleNFI with the LibFFI backend, going through JNI and libffi: truffleruby
24.1.0-dev-1727ac8b, like ruby 3.2.2, Oracle GraalVM JVM

• Panama: TruffleNFI with the Panama backend, going only through Panama: truffleruby
24.1.0-dev-1727ac8b, like ruby 3.2.2, Oracle GraalVM JVM

• Pure: Pure-Ruby variant

• CExt: C Extension variant

27 Copyright © 2024, Oracle and/or its affiliates

Upcall Benchmark

#include "ruby.h"

static VALUE foo_itself(VALUE self) {
return rb_funcall(self, rb_intern("itself"), 0);

}

void Init_cext(void) {
VALUE cFoo = rb_define_class("Foo", rb_cObject);
rb_define_singleton_method(cFoo, "foo", foo_itself, 0);

}

Ruby code:

benchmark { Foo.foo }

28 Copyright © 2024, Oracle and/or its affiliates

Upcall Benchmark Results

CRuby Sulong LibFFI Panama
0

10

20

30

40

17.97

41.65

0.79 2.14

M
ill

io
n

ite
ra

tio
ns

pe
rs

ec
on

d

29 Copyright © 2024, Oracle and/or its affiliates

JSON.dump Benchmark Results

CRuby CExt Sulong LibFFI Panama CRuby Pure TR Pure TR OptPure
0

2,000

4,000

6,000

8,000 7,402

1,437

118.41
449.98 605

3,728

7,835

Ite
ra

tio
ns

pe
rs

ec
on

d

Benchmark from https://github.com/flori/json/pull/580

30 Copyright © 2024, Oracle and/or its affiliates

https://github.com/flori/json/pull/580

JSON.load Benchmark Results

CRuby CExt Sulong LibFFI Panama CRuby Pure TR Pure
0

1,000

2,000

3,000 2,836

1,756

242.2

888.55

209.62

560.12

Ite
ra

tio
ns

pe
rs

ec
on

d

Benchmark from https://github.com/flori/json/pull/580

31 Copyright © 2024, Oracle and/or its affiliates

https://github.com/flori/json/pull/580

YAML.load Benchmark Results (single iteration, no warmup)
puts Benchmark.realtime {

YAML.load(File.read("one_megabyte_file.yml"))
}

psych+libyaml on Sulong psych on Sulong + libyaml on native psych+libyaml on native
0

0.5

1

0.14

1.08

1.33

Ite
ra

tio
ns

pe
rs

ec
on

d

About 10x faster. These benchmarks are run on TruffleRuby Native instead of TruffleRuby JVM.

32 Copyright © 2024, Oracle and/or its affiliates

Ripper Benchmark Results

benchmark { Ripper.sexp(code) }

Sulong LibFFI Panama
0

2

4

6

0.15

2.17

6.69

Ite
ra

tio
ns

pe
rs

ec
on

d

18x faster for LibFFI, 44x faster for Panama! Because ripper_yyparse() is too big (6686 lines)

33 Copyright © 2024, Oracle and/or its affiliates

Summary of Benchmarks

• Some extensions have better peak performance on Sulong, but they need a long warmup time

• Some extensions are faster on LibFFI/Panama and need no warmup

• Panama is 3-4 times faster than LibFFI, upcall (C->Ruby) performance matters a lot

• Ongoing research to automatically execute some libraries/functions natively when using Sulong

34 Copyright © 2024, Oracle and/or its affiliates

Conclusion

• About 43% of the top 10000 gems depend on a gem with a native extension

• The Ruby C extension API can be implemented by alternative Ruby implementations

• TruffleRuby first implemented the C API by JIT compiling C extensions,
which enables inlining between Ruby and C and freedom of representation

• TruffleRuby 24.0 moved to running C extensions natively, which supports large extensions and
no longer need startup and warmup for C extensions

• In general the API functions/macros returning a struct or pointer are problematic,
because they force native allocations and extra copying.
There are alternative functions/macros which do not have this issue.

35 Copyright © 2024, Oracle and/or its affiliates

Cool Things About TruffleRuby and GraalVM

• Interoperability with Java, Python, JS and other GraalVM languages:
Polyglot.eval('python', 'import matplotlib')

• Regexp JIT Compiler and how to avoid ReDoS (RubyKaigi 2021 presentation)

• Parallel execution of Ruby code and soon of RB_EXT_RACTOR_SAFE-marked C extensions

• Most advanced Ruby JIT Compiler: Inlining Ruby/C/Java/etc, Splitting, Partial Evaluation,
GraalVM Compiler optimizations like Partial Escape Analysis, etc

• Multiple GCs to choose from with various throughput and latency trade-offs
(ParallelGC, G1, ZGC)

36 Copyright © 2024, Oracle and/or its affiliates

Trying TruffleRuby

Latest release: 24.0.1 (16 April 2024)
New: EA builds at https://github.com/graalvm/oracle-graalvm-ea-builds

Use your favorite Ruby manager/installer:

$ ruby-install truffleruby
$ ruby-install truffleruby-graalvm

$ ruby-build truffleruby-24.0.1
$ ruby-build truffleruby+graalvm-24.0.1
(or rbenv install instead of ruby-build)

$ rvm install truffleruby

See https://github.com/oracle/truffleruby for more details

37 Copyright © 2024, Oracle and/or its affiliates

https://github.com/graalvm/oracle-graalvm-ea-builds
https://github.com/oracle/truffleruby

Any question?

38 Copyright © 2024, Oracle and/or its affiliates

