
Designing an Intuitive
Language-Agnostic Integration
of Foreign Objects in Ruby

Benoit Daloze

Truffle Workshop, ECOOP 2022

Who am I?

Benoit Daloze

Twitter: @eregontp
GitHub: @eregon

Website: https://eregon.me

• TruffleRuby lead at Oracle Labs, Zurich

• Worked on TruffleRuby since 2014

• PhD on parallelism in dynamic languages

• Maintainer of ruby/spec

• CRuby (MRI) committer

1 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me

TruffleRuby

• A high-performance Ruby implementation

• Uses the JIT Compiler

• Targets full compatibility with CRuby 3.0, including C extensions

• GitHub: oracle/truffleruby, Twitter: @TruffleRuby
Website: https://graalvm.org/ruby

2 Copyright © 2022, Oracle and/or its affiliates

https://graalvm.org/ruby

TruffleRuby: Peak performance on yjit-bench (14 benchmarks)

From https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

3 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

Interoperability with other languages,

and their objects, aka foreign objects

4 Copyright © 2022, Oracle and/or its affiliates

Once upon a time there was a foreign object

In a Ruby file (.rb)
foreign_object = Polyglot.eval 'js', '({ a: 1, b: 2 })'

• What can I do with this object?

• Can I print it?

• Can I access members?

• Can I ask its class? Does it have a Ruby class?

• What methods are available on it?

5 Copyright © 2022, Oracle and/or its affiliates

GraalVM and Truffle’s InteropLibrary (130 methods)

Types:
• Null
• Boolean
• String
• Number
• Date, Time or TimeZone
• Duration
• Exception
• Meta-Object
• Iterator

Traits:
• executable, instantiable
• members
• hash entries
• array elements, buffer elements
• iterable
• pointer
• associated metaobject (getMetaObject)
• declaring meta object
• source location
• identity
• language
• scope

6 Copyright © 2022, Oracle and/or its affiliates

Which semantics to prefer?

In a Ruby file (.rb)
js_array = Polyglot.eval 'js', '[1, 2, 3]'
js_array.map { |x| x * 2 }

• Should that use JS’s Array.prototype.map() or Ruby’s Array#map ?

• It should be Ruby’s Array#map, because this helps more to make existing Ruby code handle
foreign objects just fine, just like Ruby objects.

• Still possible to call the foreign object’s method explicitly:
Interop.invoke_member(js_array, :map, proc { |e, idx| e + idx })

7 Copyright © 2022, Oracle and/or its affiliates

To give a Ruby class for foreign objects or not?

Possibilities:
• Do not give a Ruby class. What should foreign.class return then?

How to make code which relies on object.class returning a Ruby class work?

• Give the same Ruby class for all foreign objects

• Give a Ruby class based on the traits (and type) of the foreign objects.
e.g. foreign object with array elements: ObjectTrait + ArrayTrait = ForeignArrayObject.
Makes it easy to add methods for a trait, and understand what "kind of object" it is.

• Give a unique Ruby class per foreign object

• Give a per-foreign-metaobject Ruby class

8 Copyright © 2022, Oracle and/or its affiliates

Method lookup for foreign objects

Method lookup for Ruby objects:
• Search method in object.class.ancestors

• Call
method_missing(name, *args)

Method lookup for foreign objects:
• Search method in object.class.ancestors

• invokeMember(name, *args) if
isMemberInvocable(name)

• readMember(name) if
isMemberReadable(name) && args.empty?
(for obj.foo)

• Call
method_missing(name, *args)

9 Copyright © 2022, Oracle and/or its affiliates

A foreign object

• Can I print it?

p foreign_object
#<Polyglot::ForeignObject[JavaScript] Object:0x1221a708 a=1, b=2>
puts foreign_object
#<Polyglot::ForeignObject[JavaScript] {a: 1, b: 2}>

• Can I access members?

foreign_object[:a] # => 1
foreign_object.a # => 1
foreign_object.instance_variables # => [:a, :b]

10 Copyright © 2022, Oracle and/or its affiliates

A foreign object

• Can I ask its class? Does it have a Ruby class?

foreign_object.class
=> Polyglot::ForeignObject
foreign_object.class.ancestors
=> [Polyglot::ForeignObject, Polyglot::ObjectTrait,
Object, Kernel, BasicObject]

• What methods are available on it?

foreign_object.methods
=> [:[], :[]=, :==, :nil?, :instance_variables, :hash, :send, ...

11 Copyright © 2022, Oracle and/or its affiliates

A foreign array
foreign_array = Polyglot.eval 'js', '[1, 2, 3]'

• Can I read and write elements?
foreign_array[0] = foreign_array[1] + 2

• Can I iterate it? Can I use any method from Enumerable?
foreign_array.map { |e| e * 3 }.select { |e| e.even? }

• Does it have a Ruby class? What is the hierarchy?
foreign_array.class
=> Polyglot::ForeignArray
foreign_array.class.ancestors
=> [Polyglot::ForeignArray, Polyglot::ArrayTrait,
Polyglot::IterableTrait, Enumerable,
Polyglot::ForeignObject, Polyglot::ObjectTrait,
Object, Kernel, BasicObject]

12 Copyright © 2022, Oracle and/or its affiliates

Going further

42 + foreign_number

foreign_string.capitalize

foreign_array.each_slice { |a, b| ... }

foreign_map.each_pair { |key, value| ... }

begin
foreign_object.foo()

rescue Exception => foreign_exception
puts foreign_exception.message, foreign_exception.backtrace

end

13 Copyright © 2022, Oracle and/or its affiliates

A look at the implementation

module Polyglot
module HashTrait
module ArrayTrait
module ExceptionTrait
module ExecutableTrait
module InstantiableTrait
module IterableTrait
module IteratorTrait
module MetaObjectTrait
module NullTrait
module NumberTrait
module PointerTrait
module StringTrait
module ObjectTrait

end

14 Copyright © 2022, Oracle and/or its affiliates

A look at the implementation

module Polyglot
class ForeignObject < Object
include ObjectTrait

end

class ForeignException < Exception
include ObjectTrait
include ExceptionTrait

end
end

15 Copyright © 2022, Oracle and/or its affiliates

A look at the implementation

module HashTrait
def [](key)

Truffle::Interop.read_hash_value_or_default(self, key, nil)
end

end

module ArrayTrait
def [](index)

size = Truffle::Interop.array_size(self)
index += size if index < 0
return nil if index < 0 || index >= size
Truffle::Interop.read_array_element(self, index)

end
end

16 Copyright © 2022, Oracle and/or its affiliates

Inner contexts

• JavaScript is single-threaded, i.e., can only be executed on one thread at a time

• Ruby is multi-threaded, many Ruby programs and the standard library use multiple threads

• In practice, this means Truffle errors when Ruby tries to create additional threads when
JavaScript is used in the same Context

• Truffle inner contexts to the rescue! Ruby can have multiple threads in the root context, and
JavaScript is on its own in an inner context.

• What about passing objects between these contexts? All is transparently proxied via
InteropLibrary with
TruffleContext#eval(String language, Source source) !

17 Copyright © 2022, Oracle and/or its affiliates

Polyglot::InnerContext

Polyglot::InnerContext.new do |ctx|
js_object = ctx.eval('js', '({ a: 1 })')
=> #<Polyglot::ForeignObject[JavaScript] Object:0x46c805be a=1>

js_function = ctx.eval('js', '(function(arg) { console.log(arg) })')
ruby_object = [1, 2, 3]
js_function.call(ruby_object)
=> 1,2,3

end

• js_object is a wrapper object implementing InteropLibrary and forwarding all messages to
the real JavaScript object. It looks exactly like a foreign object to Ruby and there is no difference

• ruby_object is wrapped similarly, but for the other direction

18 Copyright © 2022, Oracle and/or its affiliates

Gems using this deep integration

• rails/execjs: Executing JavaScript from Ruby. Each ExecJS::Context has its own
isolated state.

• rubyjs/mini_racer: Embedded JavaScript engine in Ruby. Supports attaching Ruby
lambdas and calling them from JavaScript and many more features.

For both:
• Their GraalVM backend is written entirely in Ruby using ways from this talk.

• They use Truffle inner contexts for isolation (and to let the Ruby context use multiple threads).

19 Copyright © 2022, Oracle and/or its affiliates

Try it yourself

• Get GraalVM, either a release or from
https://github.com/graalvm/graalvm-ce-dev-builds

• export PATH=graalvm/bin:$PATH

• Install Ruby: gu install ruby

• ruby --polyglot --jvm -e 'Polyglot::InnerContext.new { |ctx|
p ctx.eval "js", "({ a: 1 })" }'

• Start a shell: ruby --polyglot --jvm

20 Copyright © 2022, Oracle and/or its affiliates

https://github.com/graalvm/graalvm-ce-dev-builds

Conclusion

For best integrations of foreign objects:
• They should be given a class/meta object of the language representing their interop traits

• They should have the same methods as corresponding objects of the language

• Using inner context avoids the issue of multithreading incompatible with single-threaded
languages

• When the integration is deep enough, a lot of existing code just works on foreign objects

21 Copyright © 2022, Oracle and/or its affiliates

