
Just-in-Time Compiling
Ruby Regexps on TruffleRuby

Benoit Daloze and Josef Haider

Presenters

Benoit Daloze

TruffleRuby lead
Twitter: @eregontp
GitHub: @eregon

Josef Haider

TRegex creator and maintainer
GitHub: @djoooooe

1 Copyright © 2021, Oracle and/or its affiliates

TruffleRuby

• A high-performance Ruby implementation

• Uses the JIT Compiler

• Targets full compatibility with CRuby 2.7, including C extensions

• GitHub: oracle/truffleruby, Twitter: @TruffleRuby, website: graalvm.org/ruby

2 Copyright © 2021, Oracle and/or its affiliates

Background: Regexp Engines in TruffleRuby

• CRuby uses Onigmo (Oniguruma), backtracking regexp engine supporting 30 encodings

• TruffleRuby initially used Joni, which is a port of Onigmo to Java by JRuby developers

• Similar performance to Onigmo in CRuby

• TruffleRuby already JIT compiles "small languages of Ruby" like array.pack("C*") and
"%f" % pi, but not yet Regexps

• It would be great if TruffleRuby would also run Regexps faster!

3 Copyright © 2021, Oracle and/or its affiliates

A Wild TRegex Appeared!

4 Copyright © 2021, Oracle and/or its affiliates

TRegex

• Regular expression engine based on state machines, more specifically "deterministic finite
automata" (DFA)

• states have transitions to successor states
• every transition has a set of accepted symbols/characters

state 1start state 2
a

5 Copyright © 2021, Oracle and/or its affiliates

Regular Expressions and Finite State Machines

• Regular expressions used to be perfectly representable as state machines, but were extended
later

• Basic concepts can still be mapped to state machines directly
• Concatenation: /ab/

1start 2 3
a b

Automaton model of /ab/

6 Copyright © 2021, Oracle and/or its affiliates

Regular Expressions and Finite State Machines

• Disjunction: /ab|ac/

1start

2 4

3 5

a

a

b

c

(a) NFA model of /ab|ac/

1start 2,3

4

5

a

b

c

(b) DFA model of /ab|ac/

7 Copyright © 2021, Oracle and/or its affiliates

Regular Expressions and Finite State Machines

• Quantifiers: /a*b+/

1start 2

a

b

b

Automaton model of /a*b+/

8 Copyright © 2021, Oracle and/or its affiliates

Regular Expressions and Finite State Machines

• Capture groups: annotated transitions.

1start 2

3 4

5

6
a, (0

b, (1

c

d, (1

/0, 0)&1)

/0, 0)&1)

Automaton model of /a(bc|d)/

9 Copyright © 2021, Oracle and/or its affiliates

What is supported?

• Concatenation “ab”
• Disjunction “|”
• Infinite Quantifiers “*”, ”+”
• Capture Groups “()”, “(?<name>)”
• Character Classes “[]”, “\p{}”
• Counted Quantifiers “?”, “{n,m}” (partially)
• Anchors “^”, “$”, “\A”, “\Z”, “\b”, “\B”
• Lookahead Assertions “(?=)”
• Lookbehind Assertions “(?<=)” (partially)

10 Copyright © 2021, Oracle and/or its affiliates

What is not supported yet?

• Back-References “\1, \k<name>” in the Regexp (not in replacement strings: #gsub)
• Negative Lookahead “(?!)”
• Negative Lookbehind “(?<!)”
• Recursive Subexpression Calls “\g<name>” like “(?<sqbr>[\g<sqbr>*])”
• Possessive Quantifiers “*+”, “++”, “?+”, “{n,m}+”
• Atomic Groups “(?>)”
• Conditionals “(?(group))”
• Absent Expressions “(?~)”

11 Copyright © 2021, Oracle and/or its affiliates

Just-In-Time-Compiling regular expressions

@ExplodeLoop(MERGE_EXPLODE)
def execute(input, index = 0)

result = -1
ip = 0

outer:
loop do
current_state = STATES[ip]
result = index if current_state.final_state?
return result if index >= input.size
c = input[index]
index += 1
current_state.each_transition do |transition|
if transition.match?(c)
ip = transition.target_ip
goto :outer

end
end
return result

end
end

12 Copyright © 2021, Oracle and/or its affiliates

Just-In-Time-Compiling regular expressions

def execute(input, index = 0) # /a+(b|c)/
state0:
return -1 if index >= input.size
c = input[index]
index += 1
if c == 'a' then goto :state1
else goto :state0
end

state1:
return -1 if index >= input.size
c = input[index]
index += 1
if c == 'a' then goto :state1
elsif c == 'b' || c == 'c' then goto :state2
else goto :state0
end

state2:
return index

end

0start

1

2

[^a]

a

a

[^abc]

[bc]

13 Copyright © 2021, Oracle and/or its affiliates

Performance Results

We use the benchmark-ips gem to measure peak performance and compare:
• TruffleRuby+TRegex on GraalVM JVM CE
• TruffleRuby+Joni on GraalVM JVM CE
• CRuby 2.7

14 Copyright © 2021, Oracle and/or its affiliates

Micro-Benchmarks for "abc".match?(Regexp)

/def/ /abc/ /./ /[a-z]/ /[0-9]/
0

10

20

30

40

S
pe

ed
up

re
la

tiv
e

to
C

R
ub

y

CRuby 2.7 TruffleRuby+Joni TruffleRuby+TRegex

15 Copyright © 2021, Oracle and/or its affiliates

Larger Regexp Benchmarks

• liquid parse: Liquid::Template.new.parse(cart_template), so the parsing part
of the Liquid template language, and that parser uses Regexps heavily

• browser sniffer: from Shopify/browser_sniffer, a gem to detect which browser, OS,
versions, etc are used from the user agent using Regexps

• regex redux (no IO): a benchmark from the Computer Language Benchmarks Game which
reads 50MB of DNA/RNA sequences and transforms them using regexps (gsub!, scan)

• syslog: a benchmark parsing a single log line according to the BSD syslog Protocol (RFC 3164)

16 Copyright © 2021, Oracle and/or its affiliates

Larger Regexp Benchmarks

liquid parse browser sniffer regex redux syslog
0

2

4

6

8

1

3

5

7

9

S
pe

ed
up

re
la

tiv
e

to
C

R
ub

y

CRuby 2.7 TruffleRuby+Joni TruffleRuby+TRegex

17 Copyright © 2021, Oracle and/or its affiliates

ReDoS and Catastrophic Backtracking

• ReDoS in Rails in 2021:
CVE-2021-22880 Feb 10, CVE-2021-22902 and CVE-2021-22904 May 5 (2/4).

• TRegex always matches in linear time, no risk of ReDoS with TRegex!

• When falling back to Joni / backtracking, TruffleRuby can emit warnings
(--warn-slow-regex):
file.rb: warning: Regexp /(?!...)/ requires backtracking
and might not match in linear time

18 Copyright © 2021, Oracle and/or its affiliates

Atomic Groups

• Atomic groups cannot be easily supported by finite-state machines regex engines

• Most usages of atomic groups seem workarounds for excessive backtracking.
In that case, it is safe to ignore such groups for TRegex.

• Atomic groups can also be used for semantics (seems rare):
/"(?>.*)"/ =~ '"Quote"' # => nil

• Approach: be optimistic and assume atomic groups are used for performance, not for
semantics. TruffleRuby has an option to disable this behavior.

19 Copyright © 2021, Oracle and/or its affiliates

Conclusion

• Using finite-state machines for Regexp matching is faster than backtracking and safer

• TruffleRuby and TRegex can compile Ruby Regexps to machine code and inline them together
with Ruby code

• On the presented benchmarks, TruffleRuby+TRegex is faster than CRuby by 24x-41x for
regexp micro-benchmarks and 2.3x-9x for larger regexp benchmarks

• TruffleRuby can warn when Regexps are at risk of catastrophic backtracking (ReDoS)

20 Copyright © 2021, Oracle and/or its affiliates

Acknowledgments

• Jirka Maršík (@jirkamarsik) for adding support for the many features of Ruby Regexps in
TRegex, and most of the integration of TRegex in TruffleRuby

• Duncan MacGregor (@aardvark179) for various optimizations related to Regexp matching
(StringScanner, gsub, accessing $~ in the C API, etc)

• Kevin Menard (@nirvdrum) for further optimizations, notably to enable splitting and inlining of
regexps

21 Copyright © 2021, Oracle and/or its affiliates

