ORACLE

)
5

Splitting:
The Crucial Optimization for Ruby Blocks

1.sum_to (10)

Benoit Daloze |sum to| |1.step(3) { 1i| p i }l

RubyKaigi 2023 /
step

[141 sum += 1)| [111 p i}

P>

a
¢

TruffleRuby lead at Oracle Labs, Zurich

Worked on TruffleRuby since 2014

® PhD on parallelism in dynamic languages

Benoit Daloze ® Maintainer of ruby/spec

Mastodon: @eregon@ruby.social
Twitter: @eregontp
GitHub: @eregon

Website: https://eregon.me

CRuby (MRI) committer

2 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me

TruffleRuby

* TRUFFLE
" RUBY

® A high-performance Ruby implementation
¢ Uses the Graal JIT Compiler

® Targets full compatibility with CRuby 3.1, including C extensions
e.g. Mastodon and Discourse can run on TruffleRuby

® GitHub: oracle/truffleruby, Twitter: @ TruffleRuby, Mastodon: @truffleruby@ruby.social
Website: https://graalvm.org/ruby

3 Copyright © 2022, Oracle and/or its affiliates

https://graalvm.org/ruby

Splitting

Copyright © 2022, Oracle and/or its affiliates

SELF, the source of many dynamic language optimizations

® Similar to Smalltalk, but prototype-based, created in 1986

Many research breakthrough, used by dynamic languages nowadays:
® maps/Shapes to represent objects efficiently (used by TruffleRuby and CRuby since 3.2)

® Deoptimization: from JITed code to the interpreter and reoptimize
® Polymorphic Inline Caches (generalized as dispatch chains in Truffle)

® Splitting

Copyright © 2022, Oracle and/or its affiliates

The Customization / Splitting paper (July 1989)

Customization: Optimizing Compiler Technology for SELF, a
Dynamically-Typed Object-Oriented Programming Language*

Craig Chambers
David Ungar
Stanford University

Some languages minimize message passing by including
slauc procedure calls and built-in operators for non-

Abstract
D type bject-oriented please
programmers, bm theu- lack of static type mformatlon
perf Our new impl tech-

mques exmact static type information from declaration-
free programs. Our system compiles several copies of a
given procedure, each customized for one receiver ,
so that the type of the receiver is bound at compile
time. The compiler predicts types that are statically
unknown but likely, and inserts run-time type tests to
verify its predictions. It splits calls, compiling a copy
on each control path, optimized to the specific types on
that path. Coupling these new techniques with compile-
time message lookup, aggressive procedure inlining, and
traditional optimizations has doubled the performance
of dynamically-typed object-ori

Copyright © 2022, Oracle and/or its affiliates

t-oriented code. For example, C++ [Str86] includes
Cs repertoire of built-in operators and control struc-
tures, and some object-oriented Lisps [Moo86, Bob88]
include normal Lisp functions, such as car and cdr
which only work on cons-cells. While these impure
object-oriented languages can avoid the cost of message
passing with non- cbjecl onemed constructs, the
resulting are icted in flexi-
bility and reusabxllty

To reduce the cost of message passing, some object-
oriented languages, such as C++, TrellisfOwl [Sch86],
and Eiffel [Mey86], include explicit type declarations.
This allows the implementation to reduce the cost of a
message send (or virtual function call) to no more than

Splitting Example in SELF

2.1. An Example

Let’s look at a small piece of SELF code; we will come
back later to this example to illustrate the compiler’s
optimizations and transformations. This example sums
up the numbers from the receiver to some upper bound,
and is defined in a parent object inherited by all num-
bers:*
sumTo: upperBound = (
|sum <-0 |
to: upperBound Do: |
] lindex |
sum: sum + index }.
sum)

Copyright © 2022, Oracle and/or its affiliates

Splitting Example Translated to Ruby and Similarities

class Numeric
def sum_to (upper_bound)
sum = 0
self.step (upper_bound) do |i]
sum += i
end
sum
end
end

"Defined on Number"
sumTo: upperBound = (
|sum <—= 0]
to: upperBound Do: [|:index|
sum: sum + index

sum

Note we don’t use upt o because that’s only available on Integer, and step is closer to the SELF
example.

8 Copyright © 2022, Oracle and/or its affiliates E

Example Call Sites for sum_to

1l.sum_to(10) # => 55

1.0.sum_to(10.0) # => 55.0

1.5.sum_to(10.0) # => 49.5 (1.5 + 2.5 + ... + 9.5)
lr.sum_to(10r) # => (55/1)

(2+%80) .sum_to (2+x%81)

9 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?

class Numeric
def sum_to (upper_bound)
sum = 0
self is a Numeric, we would like to inline Numeric#step
but maybe some code added Integer#step or Float#step
self.step (upper_bound) do |1
sum += 1
end
sum
end
end

1.sum_to (10)
1.0.sum_to(10.0)

10 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?

class Numeric
def sum_to (upper_bound)
sum = 0
Inline cache with all seen receiver types/classes
[Integer => Numeric#step, Float => Numeric#step]
self.step (upper_bound) do |1
sum += 1
end
sum
end
end

1.sum_to (10)
1.0.sum_to(10.0)

11 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?

class Numeric
def sum_to (upper_bound)
sum = 0
2 levels of inline cache: lookup cache and call target cache
lookup cache: [Integer => Numeric#step, Float => Numeric#step]
call target cache: [Numeric#step]
self.step (upper_bound) do |1
sum += 1
end
sum
end
end

1.sum_to (10)
1.0.sum_to(10.0)

12 Copyright © 2022, Oracle and/or s affiliates E

Numeric#step, simplified (no keyword arguments, etc)

def step(limit = nil, step = 1, &block)
return create_step_enumerator (limit, step) unless block_given?
raise TypeError, 'step must be numeric' if Primitive.nil? step

raise ArgumentError, "step can't be 0" if step == 0

value = self

descending = step < 0

limit | |= descending ? -Float::INFINITY : Float::INFINITY

if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)
step_float (self, limit, step, descending, &block)
else
if descending
until value < limit
yield value
value += step
end
else
until value > limit
yield value
value += step
end
end
end
enlf

13 Copyright © 2022, Oracle and/or its affiliates

Example Call Sites for Numeric#step

l.step(3) { il p 1} # 1, 2, 3
1.0.step(3.0) { |i| p i} # 1.0, 2.0, 3.0

l.step(7, 2) { i1l p 1} # 1, 3, 5, 7
7.step(l, -2) { |il p i} # 7, 5, 3, 1

l.step(to: 7, by: 2) { ... } # keyword arguments
l.step(by: 2) { ... } # no upper limit

1l.step(5) # => an Enumerator

14 Copyright ® 2022, Oracle and/or its affiliates

Numeric#step, without Enumerator and early step checks

def step(limit = nil, step = 1, &block)
return create_step_enumerator (limit, step) unless block_given?
raise TypeError, 'step must be numeric' if Primitive.nil? step
raise ArgumentError, "step can't be 0" if step ==

value = self
descending = step < 0
limit | |= descending ? -Float::INFINITY : Float::INFINITY

if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)
step_float (self, limit, step, descending, &block)
else
if descending
until value < limit
yield value
value += step
end
else
until value > limit
yield value
value += step
end
end
end
aelf

15 Copyright © 2022, Oracle and/or its affiliates

Numeric#step, with descending logic in another method

def step(limit = nil, step = 1, &block)
value = self
descending = step < 0
limit | |= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)

if descending
until value < limit
yield value
value += step
end
else
until value > limit
yield value
value += step
end
end

self
end

16 Copyright © 2022, Oracle and/or s affiliates

Numeric#step, with descending logic in another method

def step(limit = nil, step = 1, é&block)

value = self

descending = step < 0

limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, step].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += step
end

self
end

17 Copyright ® 2022, Oracle and/or its affiliates

Compiling step: the main loop

def step(limit = nil, step = 1, é&block)
#
until value > limit
inline cache: [block in sum _to, block in main]
yield value
value += step
end
self
end

1.sum_to (10)
l.step(3) { [i]l p 1 }

18 Copyright © 2022, Oracle and/or its affiliates

Compiling step: inline both blocks?

def step(limit = nil, step = 1, é&block)
#
until value > limit
if block is "block in sum_to" # { /i sum += 1 }
block.outer_variables|[:sum] += value
elsif block is "block in main" # { /1] p 1 }
p value
else
deopt
end
value += step
end
self
end

19 Copyright © 2022, Oracle and/or its affiliates

Compiling step: inline N blocks?

def step(limit = nil, step = 1, é&block)
#
until value > limit
if block is "block in sum_to" # { i/ sum += 1 }
block.outer_variables|[:sum] += wvalue
elsif block is "block in main" # { /i] p 1 }
p value
elsif block is "block 3"
...
elsif block is "block 4"
o
elsif block is "block 5"
...
elsif block is "block 6"

#
alaif hlock is "hlock 7"

20 Copyright © 2022, Oracle and/or its afiliates

Solution: compile multiple copies of step

def stepl(limit = nil, step = 1, &block) # copy for block in sum to
#
until value > limit
deopt unless block is "block in sum_to" # { [i/ sum += 1 }
block.outer_variables|[:sum] += value
value += step
end
end

def step2(limit = nil, step = 1, &block) # copy for block in main
#
until value > limit
deopt unless block is "block in main" # { /i/ p 1 }
p value
value += step
and

21 Copyright © 2022, Oracle and/or its affiliates E

Splitting

1.sum_to (10)

|sum_to| |1.step(3) { 1il p 1 }

step

N
/ \
(1L sum+= 1) | [11l p i}

l
7]

22 Copyright © 2022, Oracle and/or its affliates

Splitting

1.sum_to(10) |l.step(3) (4 @4 }l

sum_to
step ! { Ii]l p 1}
|{|i| sum+:i}| IE'

23 Copyright © 2022, Oracle and/or its affiliates

Splitting

® What we just did is called splitting
® We split the method step so there is a copy of step for each caller

® Those copies or splits can then be optimized further by having more information from the caller
through inline caches and profiling information

24 Copyright © 2022, Oracle and/or its affiliates E

Splitting in TruffleRuby and Truffle: a more generic approach
An inline cache or call site can be:

® Monomorphic: single entry, for a call site it always calls the same method

® Polymorphic: 2+ entries (in TruffleRuby currently up to 8)

® Megamorphic: too many entries to cache

Everytime TruffleRuby detects polymorphism or megamorphism, it uses splitting to try to make it
monomorphic again.
® |n TruffleRuby, once we decided to split we will split for each call site

® More than that, if we still see polymorphism we might decide to split callers (e.g., sum_to)

Copyright © 2022, Oracle and/or its affiliates

Recursive Splitting

|1.sum_to(10)| |1.0.sum_to(10.0)

y

sum_to

|until value > limit|

26 Copyright © 2022, Oracle and/or its affiliates

Recursive Splitting

Integer >

1T.sum_to(10) |l.O.sum to(l0.0)l
1

sum_to

Float >

I |
n

27 Copyright © 2022, Oracle and/or its affiliates

Compiling Integer#sum_to(Integer) (split)

arguments profile: upper_bound is always seen as Integer
def sum_to (upper_bound)

sum = 0

[Integer => Numeric#step], let's inline

self.step (upper_bound) do [1i]

sum += 1

end

sum
end

1l.sum_to (10)

28 Copyright © 2022, Oracle and/or its affiliates

Compiling Numeric#step split for Integer#sum_to(Integer)

arguments profile: limit is Integer, step 1s not passed
def step(limit = nil, step = 1, &block)

value = self

descending = step < 0 # step is not passed, so step is 1
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, step].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += step
end

self
end

29 Copyright © 2022, Oracle and/or its afiliates

step is always 1,fold 1 <0

arguments profile: limit is Integer, step 1s not passed
def step(limit = nil, step = 1, é&block)
value = self
descending = 1 < 0 # step is not passed, so step is 1
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += 1

end

self
end

30 Copyright © 2022, Oracle and/or its affiliates

Propagate descending=false

arguments profile: limit is Integer, step 1is not passed
def step(limit = nil, step = 1, &block)

value = self

descending = |[false

limit | |= descending ? —-Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += 1

end

self

end

31

Copyright © 2022, Oracle and/or its affiliates

limit is Integer

arguments profile: limit is Integer, step 1is not passed
def step(limit = nil, step = 1, &block)

value = self
limit ||= Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)

until value > limit
yield value
value += 1

end

self
end

32 Copyright © 2022, Oracle and/or its affiliates

self is Integer

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self # Integer

return step_float(...) if [value, limit, 1].any?(Float)

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

33 Copyright © 2022, Oracle and/or its affiliates E

Expand Float checks

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self # Integer

return step_float(...) if [value, limit, 1].any? (Float)

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

34 Copyright © 2022, Oracle and/or its affiliates E

Fold .is_a?(Float) checks

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, é&block)
value = self # Integer
if value.is_a?(Float) or limit.is_a?(Float) or 1l.is_a? (Float)
return step_float(...)
end

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

35 Copyright © 2022, Oracle and/or its affiliates E

Compiled Numeric#step split for Integer##sum_to(Integer)

arguments profile: self is Integer, 1limit is Integer, step not passed
def step(limit = nil, step = 1, é&block)
value = self

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

36 Copyright ® 2022, Oracle and/or its affiliates E

Let’s inline step in sum_to

def sum_to (upper_bound)
sum = 0
self.step (upper_bound) do [1i]
sum += 1
end
sum
end
def step(limit = nil, step = 1, é&block)
value = self
until value > limit # Integer#>
yield value
value += 1 # Integer#+
end
self
end

37 Copyright © 2022, Oracle and/or its affiliates

Let’s inline step in sum_to

def sum_to (upper_bound)
sum = 0
value = self
until value > upper_bound # Integer#>
proc { |i] sum += 1 }.call(value)
value += 1 # Integer#+
end
sum
end

38 Copyright © 2022, Oracle and/or its affiliates

Let’s inline the block

def sum_to (upper_bound)
sum = 0
value = self
until value > upper_bound # Integer#>
sum += value # Integer#+
value += 1 # Integer#+
end
sum
end

39 Copyright © 2022, Oracle and/or its affiliates

Final result

sum_to was compiled as efficiently as this C code:

int sum_to(int self, int upper_bound) {

int sum = 0;

int value = self;

while (value <= upper_bound) {
sum += value; // + overflow check (CPU flag check like jo)
value++; // + overflow check (CPU flag check like jo)

}

return sum;

}
but it works for Float, Rational, Bignums and has no overflow!

40 Copyright © 2022, Oracle and/or its affiliates

Benchmark sum_to

1T.sum_to(10)
1.0.sum_to(10.0)
1.5.sum_to (10.0)
lr.sum_to (10r)
l.step(7, 2) { |il
l.step(to: 7, by:
1l.step (D)

p l.sum_to(1000)

benchmark do

1.sum_to (1000)
end

41 Copyright © 2022, Oracle and/or its affiliates

Benchmark results for sum_to

120 116.74

)

= 100

o

2 80

o

=

g 60

Qo

3 40

[0

2

2] 20 15.08

1
0 T T I
CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting

TruffleRuby JIT makes sum_to 15x faster, and splitting makes sum_to 7.7x faster on top of that!

42 Copyright ® 2022, Oracle and/or its affiliates E

Benchmark results for OptCarrot

8 7.74
>
o]
&
(& 6
8 5
o
=
g 4
(o}
o)
3
Q 2
n 1
0 T T I
CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting

43 Copyright ® 2022, Oracle and/or its affiliates E

Benchmark results for RailsBench (from the yjit-bench suite)

3 2.75
>
o]
]
S
-09 2
o
=
© 1.36
o
R
[0}
(9
Q.
%)
0 T T I
CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting

44 Copyright © 2022, Oracle and/or s affiliates E

TruffleRuby: Peak performance on yjit-bench (14 benchmarks)

Geometric mean over all macro benchmarks

6.23

W w ke a0 o
o o N W = o
L | L | L |

Speedup compared to 3.1
N
=~

2.0 2.7 3.0 31 mjit yjit jruby truffleruby
Fromhttps://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-Jjruby-truffleruby.html

45 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

Analyzing Ruby Call-Site Behavior paper

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby
Applications

Sophie Kaleba Octave Larose
S.Kaleba@kent.ac.uk O.Larose@kent.ac.uk
University of Kent University of Kent
United Kingdom United Kingdom
Richard Jones Stefan Marr
R.E.Jones@kent.ac.uk s.marr@kent.ac.uk
University of Kent University of Kent
United Kingdom United Kingdom
Abstract ACM Reference Format:
Applications written in dynamic languages are becoming Sophie Kalcba, Octave Larose, Richard Jones, and Stefan Marr. 2022
P ~ ; Who You Gonna Call: Analyzing the Run-time Call-Site Behavior of
larger and larger and companies increasingly use multi- ’

Ruby Applications. In Proceedings of the 18th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages (DLS *22), December 07,
2022, Auckland, New Zealand. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3563834.3567538

million line codebases in production. At the same time, dy-
namic languages rely heavily on dynamic optimizations, par-
ticularly those that reduce the overhead of method calls.

In this work, we study the call-site behavior of Ruby bench-
‘marks that are being used to guide the development of up-
coming Ruby implementations such as TruffleRuby and YJIT. 1

Introduction

46 Copyright © 2022, Oracle and/or its affiliates

Analyzing Ruby Call-Site Behavior paper

® Research by Sophie Kaleba, Octave Larose, Stefan Marr and Prof. Richard Jones

® The paper uses TruffleRuby to analyze the behavior of call sites on various Ruby benchmarks

They find that TruffleRuby has two main ways to reduce polymorphism and megamorphism:
® 2-level inline cache for method calls (lookup cache and call target cache)
® Splitting

® Thereis also a blog postat https://stefan-marr.de/

47 Copyright © 2022, Oracle and/or s affiliates E

https://stefan-marr.de/

Analyzing Calls in RailsBench

Polymorphic Calls Megamorphic Calls

Initial 956,515 (6.9%) 63,319 (0.457%)

After 2-level inline cache 490,072 (3.5%) 557 (0.004%)
After Splitting 0% 0%

The 2-level inline cache for method calls and Splitting .. .
completely remove polymorphism and megamorphism in all 44 benchmarks used in the paper!

48 Copyright ® 2022, Oracle and/or its affiliates

Conclusion

Splitting is a technique from the SELF VM research, invented in 1989 (34 years ago)
® |t applies well to Ruby, for methods taking blocks and also for other forms of polymorphism

® |t completely removes polymorphism and megamorphism on all 44 benchmarks (Kaleba et al.)

Splitting gives speedups of 7.7x on sum_to, 1.5x on OptCarrot and 2x on RailsBench

49 Copyright © 2022, Oracle and/or its affiliates E

Cool Things About TruffleRuby and GraalVM

50

Interoperability with Java, Python, JS and other GraalVM languages:
Polyglot.eval ('python', 'import matplotlib'")

Regexp JIT Compiler and how to avoid ReDoS (RubyKaigi 2021 presentation)
Parallel execution of Ruby code and soon of RB_EXT_RACTOR_SAFE-marked C extensions
Tooling accross multiple languages (LSP, DAP, backtraces mixing C and Ruby, etc)

Most advanced Ruby JIT Compiler: Inlining Ruby/C/Java/etc, Splitting, Partial Evaluation,
GraalVM Compiler optimizations like Partial Escape Analysis, etc

Multiple GCs to choose from with various throughput and latency trade-offs
(ParallelGC, G1, ZGC)

Copyright © 2022, Oracle and/or its affiliates E

Trying TruffleRuby

Latest release: 23.0.0-preview1
23.0.0 planned for June 13 (in one month)

Use your favorite Ruby manager/installer:
$ ruby-install truffleruby

$ ruby-build truffleruby-23.0.0-previewl
$ ruby-build truffleruby+tgraalvm-23.0.0-previewl
(or rbenv install instead of ruby-build)

$ rvm install truffleruby

See https://github.com/oracle/truffleruby for more details

51 Copyright ® 2022, Oracle and/or its affiliates

https://github.com/oracle/truffleruby

Any question?

52 Copyright ® 2022, Oracle and/or its affiliates

Polymorphic and Megamorphic Calls

Poly+
Benchmark Stmts Stmts Fns Fns kCalls Mega.
Cov. Cov. calls

BlogRails 118,717 48% 37,595 38% 13,863 7.4%
ChunkyCanvas™ 19,279 32% 5,082 20% 11,323 0.0%
ChunkyColor* 19,266 32% 5,077 20% 19 2.0%
ChunkyDec 19,289 32% 5,083 20% 21 2.0%
ERubiRails 117,922 45% 37,328 35% 12,309 5.4%
HexaPdfSmall 26,624 44% 6,990 35% 31,246 7.4%

LiquidCartParse 23,531 37% 6,259 27% 87 1.3%
LiquidCartRender 23,562 39% 6,269 30% 236 5.5%
LiquidMiddleware 22,374 37% 5,939 27% 70 1.4%

LiquidParseAll 23,276 37% 6,186 27% 295 1.9%
LiquidRenderBibs 23,277 39% 6,185 29% 385 23.4%
MailBench 31,857 40% 8,392 32% 2,756 3.4%
PsdColor 27,498 40% 7,724 28% 352 4.1%
PsdCompose* 27,498 40% 7,724 28% 352 4.0%
PsdImage* 27,531 40% 7,736 28% 5,509 0.0%
PsdUtil* 27,496 40% 7,724 28% 351 4.0%

Sinatra 31,187 40% 8,492 29% 172 6.9%

53 Copyright ® 2022, Oracle and/or its affiliates

The Effect of 2-level Inline Cache for Method Calls

Number of calls

After eliminating

target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 956,515 63,319 -48.8% -99.1%
ChunkyCanvas* 322 98 -80.0% -100.0%
ChunkyColor* 320 98 -79.0% -100.0%
ChunkyDec 322 98 -79.5% -100.0%
ERubiRails 626,535 40,699 -37.4% -98.6%
HexaPdfSmall 1,842,665 479,399 -21.7% -99.6%
LiquidCartParse 821 280 -73.3% -100.0%
LiquidCartRender 12,598 280 -84.1% -100.0%
LiquidMiddleware 747 251 -68.8% -100.0%
LiquidParseAll 5,369 280 -87.4% -100.0%
LiquidRenderBibs 89,866 280 -73.7% -100.0%
MailBench 81,886 12,697 -77.6% -100.0%
PsdColor 14,053 233 -53.1% -100.0%
PsdCompose™ 14,053 233 -53.0% -100.0%
PsdImage” 14,062 233 -53.0% -100.0%
PsdUtil* 14,048 233 -53.0% -100.0%
Sinatra 7,909 3,911 -82.8% -94.4%

54 Copyright ® 2022, Oracle and/or its affiliates

The Effect of Splitting

Number of calls

After splitting

Benchmark Poly. Mega. Poly. Mega.
BlogRails 490,072 557 -100% -100%
ChunkyCanvas* 66 0 -100% 0%
ChunkyColor* 66 0 -100% 0%
ChunkyDec 66 0 -100% 0%
ERubiRails 391,997 553 -100% -100%
HexaPdfSmall 1,443,211 2,066 -100% -100%
LiquidCartParse 219 0 -100% 0%
LiquidCartRender 2,000 0 -100% 0%
LiquidMiddleware 233 0 -100% 0%
LiquidParseAll 679 0 -100% 0%
LiquidRenderBibs 23,633 0 -100% 0%
MailBench 18,322 0 -100% 0%
PsdColor 6,586 0 -100% 0%
PsdCompose* 6,586 0 -100% 0%
PsdImage” 6,588 0 -100% 0%
PsdUtil* 6,584 0 -100% 0%
Sinatra 1,362 220 -100% -100%

55 Copyright ® 2022, Oracle and/or its affiliates

