
Splitting:
The Crucial Optimization for Ruby Blocks

Benoit Daloze

RubyKaigi 2023

1.sum_to(10)

sum_to

step

{ |i| sum += i } { |i| p i }

1.step(3) { |i| p i }

Who am I?

Benoit Daloze

Mastodon: @eregon@ruby.social
Twitter: @eregontp
GitHub: @eregon

Website: https://eregon.me

• TruffleRuby lead at Oracle Labs, Zurich

• Worked on TruffleRuby since 2014

• PhD on parallelism in dynamic languages

• Maintainer of ruby/spec

• CRuby (MRI) committer

2 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me

TruffleRuby

• A high-performance Ruby implementation

• Uses the JIT Compiler

• Targets full compatibility with CRuby 3.1, including C extensions
e.g. Mastodon and Discourse can run on TruffleRuby

• GitHub: oracle/truffleruby, Twitter: @TruffleRuby, Mastodon: @truffleruby@ruby.social
Website: https://graalvm.org/ruby

3 Copyright © 2022, Oracle and/or its affiliates

https://graalvm.org/ruby

Splitting

4 Copyright © 2022, Oracle and/or its affiliates

SELF, the source of many dynamic language optimizations

• Similar to Smalltalk, but prototype-based, created in 1986

Many research breakthrough, used by dynamic languages nowadays:
• maps/Shapes to represent objects efficiently (used by TruffleRuby and CRuby since 3.2)

• Deoptimization: from JITed code to the interpreter and reoptimize

• Polymorphic Inline Caches (generalized as dispatch chains in Truffle)

• Splitting

5 Copyright © 2022, Oracle and/or its affiliates

The Customization / Splitting paper (July 1989)

6 Copyright © 2022, Oracle and/or its affiliates

Splitting Example in SELF

7 Copyright © 2022, Oracle and/or its affiliates

Splitting Example Translated to Ruby and Similarities

class Numeric
def sum_to(upper_bound)
sum = 0
self.step(upper_bound) do |i|
sum += i

end
sum

end
end

"Defined on Number"
sumTo: upperBound = (

|sum <- 0|
to: upperBound Do: [|:index|

sum: sum + index
].
sum

)

Note we don’t use upto because that’s only available on Integer, and step is closer to the SELF

example.

8 Copyright © 2022, Oracle and/or its affiliates

Example Call Sites for sum_to

1.sum_to(10) # => 55

1.0.sum_to(10.0) # => 55.0

1.5.sum_to(10.0) # => 49.5 (1.5 + 2.5 + ... + 9.5)

1r.sum_to(10r) # => (55/1)

(2**80).sum_to(2**81)

9 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?

class Numeric
def sum_to(upper_bound)

sum = 0
self is a Numeric, we would like to inline Numeric#step
but maybe some code added Integer#step or Float#step
self.step(upper_bound) do |i|
sum += i

end
sum

end
end

1.sum_to(10)
1.0.sum_to(10.0)

10 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?

class Numeric
def sum_to(upper_bound)

sum = 0
Inline cache with all seen receiver types/classes
[Integer => Numeric#step, Float => Numeric#step]
self.step(upper_bound) do |i|
sum += i

end
sum

end
end

1.sum_to(10)
1.0.sum_to(10.0)

11 Copyright © 2022, Oracle and/or its affiliates

Compiling sum_to: can we inline step?
class Numeric

def sum_to(upper_bound)
sum = 0
2 levels of inline cache: lookup cache and call target cache
lookup cache: [Integer => Numeric#step, Float => Numeric#step]
call target cache: [Numeric#step]
self.step(upper_bound) do |i|
sum += i

end
sum

end
end

1.sum_to(10)
1.0.sum_to(10.0)

12 Copyright © 2022, Oracle and/or its affiliates

Numeric#step, simplified (no keyword arguments, etc)
def step(limit = nil, step = 1, &block)
return create_step_enumerator(limit, step) unless block_given?
raise TypeError, 'step must be numeric' if Primitive.nil? step
raise ArgumentError, "step can't be 0" if step == 0

value = self
descending = step < 0
limit ||= descending ? -Float::INFINITY : Float::INFINITY
if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)
step_float(self, limit, step, descending, &block)

else
if descending
until value < limit
yield value
value += step

end
else
until value > limit
yield value
value += step

end
end

end
self

end
13 Copyright © 2022, Oracle and/or its affiliates

Example Call Sites for Numeric#step

1.step(3) { |i| p i } # 1, 2, 3
1.0.step(3.0) { |i| p i } # 1.0, 2.0, 3.0

1.step(7, 2) { |i| p i } # 1, 3, 5, 7
7.step(1, -2) { |i| p i } # 7, 5, 3, 1

1.step(to: 7, by: 2) { ... } # keyword arguments

1.step(by: 2) { ... } # no upper limit

1.step(5) # => an Enumerator

14 Copyright © 2022, Oracle and/or its affiliates

Numeric#step, without Enumerator and early step checks
def step(limit = nil, step = 1, &block)
return create_step_enumerator(limit, step) unless block_given?
raise TypeError, 'step must be numeric' if Primitive.nil? step
raise ArgumentError, "step can't be 0" if step == 0

value = self
descending = step < 0
limit ||= descending ? -Float::INFINITY : Float::INFINITY
if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)
step_float(self, limit, step, descending, &block)

else
if descending
until value < limit
yield value
value += step

end
else
until value > limit
yield value
value += step

end
end

end
self

end
15 Copyright © 2022, Oracle and/or its affiliates

Numeric#step, with descending logic in another method

def step(limit = nil, step = 1, &block)
value = self
descending = step < 0
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if value.is_a?(Float) or limit.is_a?(Float) or step.is_a?(Float)

if descending
until value < limit
yield value
value += step

end
else
until value > limit
yield value
value += step

end
end

self
end

16 Copyright © 2022, Oracle and/or its affiliates

Numeric#step, with descending logic in another method

def step(limit = nil, step = 1, &block)
value = self
descending = step < 0
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, step].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += step

end

self
end

17 Copyright © 2022, Oracle and/or its affiliates

Compiling step: the main loop

def step(limit = nil, step = 1, &block)
...
until value > limit
inline cache: [block in sum_to, block in main]
yield value
value += step

end
self

end

1.sum_to(10)
1.step(3) { |i| p i }

18 Copyright © 2022, Oracle and/or its affiliates

Compiling step: inline both blocks?

def step(limit = nil, step = 1, &block)
...
until value > limit
if block is "block in sum_to" # { |i| sum += i }
block.outer_variables[:sum] += value

elsif block is "block in main" # { |i| p i }
p value

else
deopt

end
value += step

end
self

end

19 Copyright © 2022, Oracle and/or its affiliates

Compiling step: inline N blocks?
def step(limit = nil, step = 1, &block)

...
until value > limit
if block is "block in sum_to" # { |i| sum += i }
block.outer_variables[:sum] += value

elsif block is "block in main" # { |i| p i }
p value

elsif block is "block 3"
...

elsif block is "block 4"
...

elsif block is "block 5"
...

elsif block is "block 6"
...

elsif block is "block 7"
...

else
deopt

end
value += step

end
self

end

20 Copyright © 2022, Oracle and/or its affiliates

Solution: compile multiple copies of step
def step1(limit = nil, step = 1, &block) # copy for block in sum_to

...
until value > limit

deopt unless block is "block in sum_to" # { |i| sum += i }
block.outer_variables[:sum] += value
value += step

end
end

def step2(limit = nil, step = 1, &block) # copy for block in main
...
until value > limit

deopt unless block is "block in main" # { |i| p i }
p value
value += step

end
end
21 Copyright © 2022, Oracle and/or its affiliates

Splitting

1.sum_to(10)

sum_to

step

{ |i| sum += i } { |i| p i }

p

1.step(3) { |i| p i }

22 Copyright © 2022, Oracle and/or its affiliates

Splitting

1.sum_to(10)

sum_to

step 1

{ |i| sum += i }

1.step(3) { |i| p i }

step 2

{ |i| p i }

p

23 Copyright © 2022, Oracle and/or its affiliates

Splitting

• What we just did is called splitting

• We split the method step so there is a copy of step for each caller

• Those copies or splits can then be optimized further by having more information from the caller
through inline caches and profiling information

24 Copyright © 2022, Oracle and/or its affiliates

Splitting in TruffleRuby and Truffle: a more generic approach

An inline cache or call site can be:
• Monomorphic: single entry, for a call site it always calls the same method

• Polymorphic: 2+ entries (in TruffleRuby currently up to 8)

• Megamorphic: too many entries to cache

Everytime TruffleRuby detects polymorphism or megamorphism, it uses splitting to try to make it
monomorphic again.
• In TruffleRuby, once we decided to split we will split for each call site

• More than that, if we still see polymorphism we might decide to split callers (e.g., sum_to)

25 Copyright © 2022, Oracle and/or its affiliates

Recursive Splitting

1.sum_to(10)

sum_to

step

until value > limit

Integer > Float >

1.0.sum_to(10.0)

26 Copyright © 2022, Oracle and/or its affiliates

Recursive Splitting

1.sum_to(10)

sum_to 1

step 1

Integer >

1.0.sum_to(10.0)

sum_to 2

step 2

Float >

27 Copyright © 2022, Oracle and/or its affiliates

Compiling Integer#sum_to(Integer) (split)

arguments profile: upper_bound is always seen as Integer
def sum_to(upper_bound)

sum = 0
[Integer => Numeric#step], let's inline
self.step(upper_bound) do |i|
sum += i

end
sum

end

1.sum_to(10)

28 Copyright © 2022, Oracle and/or its affiliates

Compiling Numeric#step split for Integer#sum_to(Integer)

arguments profile: limit is Integer, step is not passed
def step(limit = nil, step = 1, &block)

value = self
descending = step < 0 # step is not passed, so step is 1
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, step].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += step

end

self
end

29 Copyright © 2022, Oracle and/or its affiliates

step is always 1, fold 1 < 0

arguments profile: limit is Integer, step is not passed
def step(limit = nil, step = 1, &block)

value = self
descending = 1 < 0 # step is not passed, so step is 1
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += 1

end

self
end

30 Copyright © 2022, Oracle and/or its affiliates

Propagate descending=false

arguments profile: limit is Integer, step is not passed
def step(limit = nil, step = 1, &block)

value = self
descending = false
limit ||= descending ? -Float::INFINITY : Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)
return step_descending(...) if descending

until value > limit
yield value
value += 1

end

self
end

31 Copyright © 2022, Oracle and/or its affiliates

limit is Integer

arguments profile: limit is Integer, step is not passed
def step(limit = nil, step = 1, &block)

value = self
limit ||= Float::INFINITY
return step_float(...) if [value, limit, 1].any?(Float)

until value > limit
yield value
value += 1

end

self
end

32 Copyright © 2022, Oracle and/or its affiliates

self is Integer

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self # Integer
return step_float(...) if [value, limit, 1].any?(Float)

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

33 Copyright © 2022, Oracle and/or its affiliates

Expand Float checks

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self # Integer
return step_float(...) if [value, limit, 1].any?(Float)

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

34 Copyright © 2022, Oracle and/or its affiliates

Fold .is_a?(Float) checks

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self # Integer
if value.is_a?(Float) or limit.is_a?(Float) or 1.is_a?(Float)
return step_float(...)

end

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

35 Copyright © 2022, Oracle and/or its affiliates

Compiled Numeric#step split for Integer#sum_to(Integer)

arguments profile: self is Integer, limit is Integer, step not passed
def step(limit = nil, step = 1, &block)

value = self

until value > limit # Integer#>
yield value
value += 1 # Integer#+

end

self
end

36 Copyright © 2022, Oracle and/or its affiliates

Let’s inline step in sum_to

def sum_to(upper_bound)
sum = 0
self.step(upper_bound) do |i|
sum += i

end
sum

end
def step(limit = nil, step = 1, &block)

value = self
until value > limit # Integer#>
yield value
value += 1 # Integer#+

end
self

end

37 Copyright © 2022, Oracle and/or its affiliates

Let’s inline step in sum_to

def sum_to(upper_bound)
sum = 0
value = self
until value > upper_bound # Integer#>

proc { |i| sum += i }.call(value)
value += 1 # Integer#+

end
sum

end

38 Copyright © 2022, Oracle and/or its affiliates

Let’s inline the block

def sum_to(upper_bound)
sum = 0
value = self
until value > upper_bound # Integer#>

sum += value # Integer#+
value += 1 # Integer#+

end
sum

end

39 Copyright © 2022, Oracle and/or its affiliates

Final result

sum_to was compiled as efficiently as this C code:

int sum_to(int self, int upper_bound) {
int sum = 0;
int value = self;
while (value <= upper_bound) {

sum += value; // + overflow check (CPU flag check like jo)
value++; // + overflow check (CPU flag check like jo)

}
return sum;

}

but it works for Float, Rational, Bignums and has no overflow!

40 Copyright © 2022, Oracle and/or its affiliates

Benchmark sum_to

1.sum_to(10)
1.0.sum_to(10.0)
1.5.sum_to(10.0)
1r.sum_to(10r)
1.step(7, 2) { |i| p i }
1.step(to: 7, by: 2) { }
1.step(5)
p 1.sum_to(1000)

benchmark do
1.sum_to(1000)

end

41 Copyright © 2022, Oracle and/or its affiliates

Benchmark results for sum_to

CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting
0

20

40

60

80

100

120

1

15.08

116.74

S
pe

ed
up

re
la

tiv
e

to
C

R
ub

y

TruffleRuby JIT makes sum_to 15x faster, and splitting makes sum_to 7.7x faster on top of that!

42 Copyright © 2022, Oracle and/or its affiliates

Benchmark results for OptCarrot

CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting
0

2

4

6

8

1

5

7.74

S
pe

ed
up

re
la

tiv
e

to
C

R
ub

y

43 Copyright © 2022, Oracle and/or its affiliates

Benchmark results for RailsBench (from the yjit-bench suite)

CRuby 3.1 TruffleRuby no splitting TruffleRuby with splitting
0

1

2

3

1

1.36

2.75

S
pe

ed
up

re
la

tiv
e

to
C

R
ub

y

44 Copyright © 2022, Oracle and/or its affiliates

TruffleRuby: Peak performance on yjit-bench (14 benchmarks)

From https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

45 Copyright © 2022, Oracle and/or its affiliates

https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

Analyzing Ruby Call-Site Behavior paper

46 Copyright © 2022, Oracle and/or its affiliates

Analyzing Ruby Call-Site Behavior paper

• Research by Sophie Kaleba, Octave Larose, Stefan Marr and Prof. Richard Jones

• The paper uses TruffleRuby to analyze the behavior of call sites on various Ruby benchmarks

• They find that TruffleRuby has two main ways to reduce polymorphism and megamorphism:
• 2-level inline cache for method calls (lookup cache and call target cache)
• Splitting

• There is also a blog post at https://stefan-marr.de/

47 Copyright © 2022, Oracle and/or its affiliates

https://stefan-marr.de/

Analyzing Calls in RailsBench

Polymorphic Calls Megamorphic Calls
Initial 956,515 (6.9%) 63,319 (0.457%)

After 2-level inline cache 490,072 (3.5%) 557 (0.004%)
After Splitting 0% 0%

The 2-level inline cache for method calls and Splitting . . .
completely remove polymorphism and megamorphism in all 44 benchmarks used in the paper!

48 Copyright © 2022, Oracle and/or its affiliates

Conclusion

• Splitting is a technique from the SELF VM research, invented in 1989 (34 years ago)

• It applies well to Ruby, for methods taking blocks and also for other forms of polymorphism

• It completely removes polymorphism and megamorphism on all 44 benchmarks (Kaleba et al.)

• Splitting gives speedups of 7.7x on sum_to, 1.5x on OptCarrot and 2x on RailsBench

49 Copyright © 2022, Oracle and/or its affiliates

Cool Things About TruffleRuby and GraalVM

• Interoperability with Java, Python, JS and other GraalVM languages:
Polyglot.eval('python', 'import matplotlib')

• Regexp JIT Compiler and how to avoid ReDoS (RubyKaigi 2021 presentation)

• Parallel execution of Ruby code and soon of RB_EXT_RACTOR_SAFE-marked C extensions

• Tooling accross multiple languages (LSP, DAP, backtraces mixing C and Ruby, etc)

• Most advanced Ruby JIT Compiler: Inlining Ruby/C/Java/etc, Splitting, Partial Evaluation,
GraalVM Compiler optimizations like Partial Escape Analysis, etc

• Multiple GCs to choose from with various throughput and latency trade-offs
(ParallelGC, G1, ZGC)

50 Copyright © 2022, Oracle and/or its affiliates

Trying TruffleRuby

Latest release: 23.0.0-preview1
23.0.0 planned for June 13 (in one month)

Use your favorite Ruby manager/installer:

$ ruby-install truffleruby

$ ruby-build truffleruby-23.0.0-preview1
$ ruby-build truffleruby+graalvm-23.0.0-preview1
(or rbenv install instead of ruby-build)

$ rvm install truffleruby

See https://github.com/oracle/truffleruby for more details

51 Copyright © 2022, Oracle and/or its affiliates

https://github.com/oracle/truffleruby

Any question?

52 Copyright © 2022, Oracle and/or its affiliates

Polymorphic and Megamorphic Calls

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Table 1. Around 38% of all statements including libraries
are executed, which equates to a 27% coverage across all
methods. 46 benchmarks are megamorphic, from a total of 74
benchmarks: the majority of these are industrial benchmarks.
The *-suffixed benchmarks have been aggregated due to their
similar behavior, and their values have been averaged.

Benchmark Stmts
Stmts
Cov. Fns

Fns
Cov. kCalls

Poly+
Mega.
calls

Exec.
call-
sites

Poly+
Mega.
call-
sites

BlogRails 118,717 48% 37,595 38% 13,863 7.4% 52,361 2.3%
ChunkyCanvas* 19,279 32% 5,082 20% 11,323 0.0% 1,816 1.0%
ChunkyColor* 19,266 32% 5,077 20% 19 2.0% 1,790 1.0%

ChunkyDec 19,289 32% 5,083 20% 21 2.0% 1,809 1.2%
ERubiRails 117,922 45% 37,328 35% 12,309 5.4% 47,794 2.3%

HexaPdfSmall 26,624 44% 6,990 35% 31,246 7.4% 6,872 4.1%
LiquidCartParse 23,531 37% 6,259 27% 87 1.3% 3,065 1.9%

LiquidCartRender 23,562 39% 6,269 30% 236 5.5% 3,581 2.4%
LiquidMiddleware 22,374 37% 5,939 27% 70 1.4% 2,918 1.4%

LiquidParseAll 23,276 37% 6,186 27% 295 1.9% 3,127 2.2%
LiquidRenderBibs 23,277 39% 6,185 29% 385 23.4% 3,466 2.8%

MailBench 31,857 40% 8,392 32% 2,756 3.4% 5,414 3.6%
PsdColor 27,498 40% 7,724 28% 352 4.1% 6,668 1.9%

PsdCompose* 27,498 40% 7,724 28% 352 4.0% 6,678 2.0%
PsdImage* 27,531 40% 7,736 28% 5,509 0.0% 6,677 2.0%
PsdUtil* 27,496 40% 7,724 28% 351 4.0% 6,655 2.0%
Sinatra 31,187 40% 8,492 29% 172 6.9% 5,639 4.4%

ADConvert 21,588 37% 4,771 27% 371 7.9% 3,979 3.1%
ADLoadFile 21,586 35% 4,771 26% 171 13.2% 3,335 2.9%
DeltaBlue 16,292 31% 4,052 21% 13 6.4% 1,738 2.4%
PsychLoad 19,282 36% 4,982 25% 6,232 11.6% 2,412 1.9%
RedBlack 15,909 30% 3,915 20% 42,897 20.3% 1,774 2.9%

Acid 15,703 29% 3,877 19% 9 1.7% 1,445 0.7%
BinaryTrees 15,708 30% 3,876 20% 6,355 0.0% 1,474 0.7%

Bounce 15,979 29% 3,953 19% 16 0.9% 1,457 0.7%
CD 16,386 30% 4,025 20% 75,184 6.2% 1,772 0.7%

Fannkuch 15,729 30% 3,873 19% 10,864 0.0% 1,473 0.7%
Havlak 16,237 31% 4,027 21% 44,901 3.0% 1,710 0.7%

ImgDemoConv 15,776 29% 3,905 20% 3,417 0.0% 1,512 0.7%
ImgDemoSobel 15,818 30% 3,920 20% 3,806 0.0% 1,518 0.7%

Json 16,223 30% 4,024 20% 210 0.1% 1,584 0.6%
List 15,716 29% 3,878 19% 53 0.3% 1,457 0.7%

Mandelbrot 15,730 29% 3,872 19% 9 1.7% 1,437 0.7%
MatrixMultiply 15,712 29% 3,879 20% 100 0.1% 1,473 0.7%

NBody 15,763 29% 3,892 19% 9 1.6% 1,518 0.7%
NeuralNet 15,792 30% 3,911 20% 33,010 0.0% 1,602 0.7%
OptCarrot 18,518 35% 4,450 24% 9,242 0.0% 2,544 1.0%
Permute 15,707 29% 3,875 19% 40 0.4% 1,445 0.7%
Pidigits 15,714 29% 3,873 19% 97 0.2% 1,456 0.7%
Queens 15,716 29% 3,878 19% 23 0.6% 1,449 0.7%
Richards 15,935 30% 3,934 20% 1,553 0.0% 1,584 0.6%

Sieve 15,699 29% 3,873 19% 9 1.7% 1,440 0.7%
SpectralNorm 15,715 29% 3,882 20% 6,441 0.0% 1,479 0.7%

Storage 15,954 29% 3,950 19% 24 0.6% 1,449 0.7%
Towers 15,726 29% 3,882 19% 82 0.2% 1,456 0.7%

the duplicates (columns four and five). Appendix B provides
additional data from a static perspective, showing the impact
of these optimizations on the number of polymorphic and
megamorphic call-sites.
Our results show that up to 93.6% of polymorphic calls

are subject to target polymorphism. Eliminating target du-
plication reduces the number of polymorphic calls signi-
ficantly. The benchmarks that benefit most are OptCarrot,
a NES emulator, and LiquidParseAll, which parses Liquid
HTML templates. OptCarrot had 93.6% of its polymorphic
calls monomorphized. LiquidParseAll had 87.4% of its calls
monomorphized. All of its megamorphic calls have been
eliminated in the process as well.

Almost all of the megamorphic benchmarks see their meg-
amorphic calls turning either polymorphic or evenmonomor-
phic. Four megamorphic benchmarks still experience me-
gamorphic calls after the elimination of target duplicates: the

Table 2. Eliminating target duplicates in the cache is very
effective at reducing polymorphism: It is generally reduced
by around 45%, except for RedBlack and CD that has less
than 8% of duplicates

Number of calls After eliminating
target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 956,515 63,319 -48.8% -99.1%

ChunkyCanvas* 322 98 -80.0% -100.0%
ChunkyColor* 320 98 -79.0% -100.0%

ChunkyDec 322 98 -79.5% -100.0%
ERubiRails 626,535 40,699 -37.4% -98.6%

HexaPdfSmall 1,842,665 479,399 -21.7% -99.6%
LiquidCartParse 821 280 -73.3% -100.0%

LiquidCartRender 12,598 280 -84.1% -100.0%
LiquidMiddleware 747 251 -68.8% -100.0%

LiquidParseAll 5,369 280 -87.4% -100.0%
LiquidRenderBibs 89,866 280 -73.7% -100.0%

MailBench 81,886 12,697 -77.6% -100.0%
PsdColor 14,053 233 -53.1% -100.0%

PsdCompose* 14,053 233 -53.0% -100.0%
PsdImage* 14,062 233 -53.0% -100.0%
PsdUtil* 14,048 233 -53.0% -100.0%
Sinatra 7,909 3,911 -82.8% -94.4%

ADConvert 29,337 0 -58.3% 0.0%
ADLoadFile 22,654 0 -53.5% 0.0%
DeltaBlue 846 0 -33.7% 0.0%
PsychLoad 723,984 0 -85.7% 0.0%
RedBlack 8,718,802 0 -7.7% 0.0%

two Ruby-on-Rails-based benchmarks BlogRails and ERu-
biRails, where the megamorphism is in the HTTP request
routing and in the ActiveSupport library callbacks; HexaPdf-
Small when validating PDF objects during the PDF genera-
tion process; and Sinatra, when compiling newHTTP routing
paths.

Observation 3. We conclude that eliminating target dupli-
cates reduces polymorphism successfully, eliminating mega-
morphic calls almost completely.

Splitting eliminates almost all remaining polymor-
phism. Table 3 is structured similarly to Table 2. The table
shows how splitting impacts polymorphism once target du-
plicates have been eliminated. The Number of splits-column
indicates the number of method copies created. Notably,
the table shows that all remaining polymorphic calls are
monomorphized by splitting.

The benchmarks with a large number of polymorphic call-
sites (see Table 11) usually have a high amount of splitting,
as we would expect considering Truffle’s splitting heuristic
(see Section 2.3). For example, BlogRails and ERubiRails rank
respectively first and second in terms of the number of times
splitting occurred (2163 and 1851 times).
The minimally-polymorphic benchmarks excluded from

Table 3 mostly behave homogeneously: with the exception
of CD and Havlak, our two outliers with a large number of
(polymorphic) calls, they all had around thirty polymorphic
calls remaining, stemming from less than eight call-sites that
were monomorphized by splitting (see Appendix B). Consid-
ering this small number of polymorphic call-sites remaining,
the amount of splitting they experience is however high,
with at least 27 splits occurring. In the following Section 4.3,
we discuss why these benchmarks may experience splitting

7

53 Copyright © 2022, Oracle and/or its affiliates

The Effect of 2-level Inline Cache for Method Calls

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby Applications DLS ’22, December 07, 2022, Auckland, New Zealand

Table 1. Around 38% of all statements including libraries
are executed, which equates to a 27% coverage across all
methods. 46 benchmarks are megamorphic, from a total of 74
benchmarks: the majority of these are industrial benchmarks.
The *-suffixed benchmarks have been aggregated due to their
similar behavior, and their values have been averaged.

Benchmark Stmts
Stmts
Cov. Fns

Fns
Cov. kCalls

Poly+
Mega.
calls

Exec.
call-
sites

Poly+
Mega.
call-
sites

BlogRails 118,717 48% 37,595 38% 13,863 7.4% 52,361 2.3%
ChunkyCanvas* 19,279 32% 5,082 20% 11,323 0.0% 1,816 1.0%
ChunkyColor* 19,266 32% 5,077 20% 19 2.0% 1,790 1.0%

ChunkyDec 19,289 32% 5,083 20% 21 2.0% 1,809 1.2%
ERubiRails 117,922 45% 37,328 35% 12,309 5.4% 47,794 2.3%

HexaPdfSmall 26,624 44% 6,990 35% 31,246 7.4% 6,872 4.1%
LiquidCartParse 23,531 37% 6,259 27% 87 1.3% 3,065 1.9%

LiquidCartRender 23,562 39% 6,269 30% 236 5.5% 3,581 2.4%
LiquidMiddleware 22,374 37% 5,939 27% 70 1.4% 2,918 1.4%

LiquidParseAll 23,276 37% 6,186 27% 295 1.9% 3,127 2.2%
LiquidRenderBibs 23,277 39% 6,185 29% 385 23.4% 3,466 2.8%

MailBench 31,857 40% 8,392 32% 2,756 3.4% 5,414 3.6%
PsdColor 27,498 40% 7,724 28% 352 4.1% 6,668 1.9%

PsdCompose* 27,498 40% 7,724 28% 352 4.0% 6,678 2.0%
PsdImage* 27,531 40% 7,736 28% 5,509 0.0% 6,677 2.0%
PsdUtil* 27,496 40% 7,724 28% 351 4.0% 6,655 2.0%
Sinatra 31,187 40% 8,492 29% 172 6.9% 5,639 4.4%

ADConvert 21,588 37% 4,771 27% 371 7.9% 3,979 3.1%
ADLoadFile 21,586 35% 4,771 26% 171 13.2% 3,335 2.9%
DeltaBlue 16,292 31% 4,052 21% 13 6.4% 1,738 2.4%
PsychLoad 19,282 36% 4,982 25% 6,232 11.6% 2,412 1.9%
RedBlack 15,909 30% 3,915 20% 42,897 20.3% 1,774 2.9%

Acid 15,703 29% 3,877 19% 9 1.7% 1,445 0.7%
BinaryTrees 15,708 30% 3,876 20% 6,355 0.0% 1,474 0.7%

Bounce 15,979 29% 3,953 19% 16 0.9% 1,457 0.7%
CD 16,386 30% 4,025 20% 75,184 6.2% 1,772 0.7%

Fannkuch 15,729 30% 3,873 19% 10,864 0.0% 1,473 0.7%
Havlak 16,237 31% 4,027 21% 44,901 3.0% 1,710 0.7%

ImgDemoConv 15,776 29% 3,905 20% 3,417 0.0% 1,512 0.7%
ImgDemoSobel 15,818 30% 3,920 20% 3,806 0.0% 1,518 0.7%

Json 16,223 30% 4,024 20% 210 0.1% 1,584 0.6%
List 15,716 29% 3,878 19% 53 0.3% 1,457 0.7%

Mandelbrot 15,730 29% 3,872 19% 9 1.7% 1,437 0.7%
MatrixMultiply 15,712 29% 3,879 20% 100 0.1% 1,473 0.7%

NBody 15,763 29% 3,892 19% 9 1.6% 1,518 0.7%
NeuralNet 15,792 30% 3,911 20% 33,010 0.0% 1,602 0.7%
OptCarrot 18,518 35% 4,450 24% 9,242 0.0% 2,544 1.0%
Permute 15,707 29% 3,875 19% 40 0.4% 1,445 0.7%
Pidigits 15,714 29% 3,873 19% 97 0.2% 1,456 0.7%
Queens 15,716 29% 3,878 19% 23 0.6% 1,449 0.7%
Richards 15,935 30% 3,934 20% 1,553 0.0% 1,584 0.6%

Sieve 15,699 29% 3,873 19% 9 1.7% 1,440 0.7%
SpectralNorm 15,715 29% 3,882 20% 6,441 0.0% 1,479 0.7%

Storage 15,954 29% 3,950 19% 24 0.6% 1,449 0.7%
Towers 15,726 29% 3,882 19% 82 0.2% 1,456 0.7%

the duplicates (columns four and five). Appendix B provides
additional data from a static perspective, showing the impact
of these optimizations on the number of polymorphic and
megamorphic call-sites.
Our results show that up to 93.6% of polymorphic calls

are subject to target polymorphism. Eliminating target du-
plication reduces the number of polymorphic calls signi-
ficantly. The benchmarks that benefit most are OptCarrot,
a NES emulator, and LiquidParseAll, which parses Liquid
HTML templates. OptCarrot had 93.6% of its polymorphic
calls monomorphized. LiquidParseAll had 87.4% of its calls
monomorphized. All of its megamorphic calls have been
eliminated in the process as well.

Almost all of the megamorphic benchmarks see their meg-
amorphic calls turning either polymorphic or evenmonomor-
phic. Four megamorphic benchmarks still experience me-
gamorphic calls after the elimination of target duplicates: the

Table 2. Eliminating target duplicates in the cache is very
effective at reducing polymorphism: It is generally reduced
by around 45%, except for RedBlack and CD that has less
than 8% of duplicates

Number of calls After eliminating
target duplicates

Benchmark Poly. Mega. Poly. Mega.
BlogRails 956,515 63,319 -48.8% -99.1%

ChunkyCanvas* 322 98 -80.0% -100.0%
ChunkyColor* 320 98 -79.0% -100.0%

ChunkyDec 322 98 -79.5% -100.0%
ERubiRails 626,535 40,699 -37.4% -98.6%

HexaPdfSmall 1,842,665 479,399 -21.7% -99.6%
LiquidCartParse 821 280 -73.3% -100.0%

LiquidCartRender 12,598 280 -84.1% -100.0%
LiquidMiddleware 747 251 -68.8% -100.0%

LiquidParseAll 5,369 280 -87.4% -100.0%
LiquidRenderBibs 89,866 280 -73.7% -100.0%

MailBench 81,886 12,697 -77.6% -100.0%
PsdColor 14,053 233 -53.1% -100.0%

PsdCompose* 14,053 233 -53.0% -100.0%
PsdImage* 14,062 233 -53.0% -100.0%
PsdUtil* 14,048 233 -53.0% -100.0%
Sinatra 7,909 3,911 -82.8% -94.4%

ADConvert 29,337 0 -58.3% 0.0%
ADLoadFile 22,654 0 -53.5% 0.0%
DeltaBlue 846 0 -33.7% 0.0%
PsychLoad 723,984 0 -85.7% 0.0%
RedBlack 8,718,802 0 -7.7% 0.0%

two Ruby-on-Rails-based benchmarks BlogRails and ERu-
biRails, where the megamorphism is in the HTTP request
routing and in the ActiveSupport library callbacks; HexaPdf-
Small when validating PDF objects during the PDF genera-
tion process; and Sinatra, when compiling newHTTP routing
paths.

Observation 3. We conclude that eliminating target dupli-
cates reduces polymorphism successfully, eliminating mega-
morphic calls almost completely.

Splitting eliminates almost all remaining polymor-
phism. Table 3 is structured similarly to Table 2. The table
shows how splitting impacts polymorphism once target du-
plicates have been eliminated. The Number of splits-column
indicates the number of method copies created. Notably,
the table shows that all remaining polymorphic calls are
monomorphized by splitting.

The benchmarks with a large number of polymorphic call-
sites (see Table 11) usually have a high amount of splitting,
as we would expect considering Truffle’s splitting heuristic
(see Section 2.3). For example, BlogRails and ERubiRails rank
respectively first and second in terms of the number of times
splitting occurred (2163 and 1851 times).
The minimally-polymorphic benchmarks excluded from

Table 3 mostly behave homogeneously: with the exception
of CD and Havlak, our two outliers with a large number of
(polymorphic) calls, they all had around thirty polymorphic
calls remaining, stemming from less than eight call-sites that
were monomorphized by splitting (see Appendix B). Consid-
ering this small number of polymorphic call-sites remaining,
the amount of splitting they experience is however high,
with at least 27 splits occurring. In the following Section 4.3,
we discuss why these benchmarks may experience splitting

7

54 Copyright © 2022, Oracle and/or its affiliates

The Effect of Splitting

DLS ’22, December 07, 2022, Auckland, New Zealand Kaleba et al.

more than twice, even though they had only a few remaining
polymorphic call-sites.

Table 3. The polymorphic and megamorphic calls remaining
after having eliminated target duplicates are almost com-
pletely monomorphized by splitting.

Number of calls After splitting
Benchmark Poly. Mega. Poly. Mega.

Number
of splits

BlogRails 490,072 557 -100% -100% 2163
ChunkyCanvas* 66 0 -100% 0% 43
ChunkyColor* 66 0 -100% 0% 42

ChunkyDec 66 0 -100% 0% 42
ERubiRails 391,997 553 -100% -100% 1851

HexaPdfSmall 1,443,211 2,066 -100% -100% 498
LiquidCartParse 219 0 -100% 0% 107

LiquidCartRender 2,000 0 -100% 0% 207
LiquidMiddleware 233 0 -100% 0% 114

LiquidParseAll 679 0 -100% 0% 136
LiquidRenderBibs 23,633 0 -100% 0% 191

MailBench 18,322 0 -100% 0% 343
PsdColor 6,586 0 -100% 0% 300

PsdCompose* 6,586 0 -100% 0% 300
PsdImage* 6,588 0 -100% 0% 300
PsdUtil* 6,584 0 -100% 0% 300
Sinatra 1,362 220 -100% -100% 297

ADConvert 12,226 0 -100% 0% 236
ADLoadFile 10,525 0 -100% 0% 175
DeltaBlue 561 0 -100% 0% 78
PsychLoad 103,506 0 -100% 0% 78
RedBlack 8,043,472 0 -100% 0% 50

Tables 2 and 3 provide a dynamic perspective on the im-
pact of eliminating target duplicates and splitting on call-site
behavior. We show these two optimizations are very suc-
cessful at monomorphizing polymorphic call-sites, as well
as eliminating megamorphism.
Table 4 shows how the two optimizations influence the

maximum number of targets per cache. The larger bench-
marks have a higher maximum number of receivers for at
least one call site (i.e. the Ruby-on-Rails benchmarks with
at least one cache holding 206 targets). Furthermore, elimi-
nating duplicates significantly decreases the degree of poly-
morphism in the megamorphic benchmarks subset, only few
caches remain polymorphic. Similarly to what we observed
in Table 2, only the most megamorphic benchmarks such as
the two Ruby-on-Rails benchmarks and Sinatra stay meg-
amorphic before splitting is considered. HexaPdfSmall stays
megamorphic before splitting, even so the maximum cache
size is relatively small with only 11 targets. The minimally-
polymorphic benchmarks, not pictured here, all behave ho-
mogeneously, with a maximum of four targets before all
optimizations, reduced to two after eliminating duplicates,
and completely monomorphized after splitting. A closer look
at the distribution of receivers shows that the distribution
remains unchanged at any optimization stage, with at least
75% of calls being monomorphic only.

Observation 4. Splitting in combination with addressing tar-
get polymorphism is effective at monomorphizing polymorphic
call-sites. Only two benchmarks from our set still display poly-
morphism, with caches containing at most two targets. All
other benchmarks have been completely monomorphized.

Table 4. Eliminating target duplicates, in addition to split-
ting, reduces the maximum cache size. Both optimizations
together turn almost all caches monomorphic, even when
they held many targets initially.

Biggest cache size (number of targets)

Benchmark
before
all

optimisations

after
eliminating
duplicates

after
splitting

BlogRails 206 24 2
ChunkyCanvas* 15 2 1
ChunkyColor* 15 2 1

ChunkyDec 15 2 1
ERubiRails 206 24 2

HexaPdfSmall 20 11 1
LiquidCartParse 20 2 1

LiquidCartRender 20 5 1
LiquidMiddleware 18 2 1

LiquidParseAll 20 4 1
LiquidRenderBibs 20 7 1

MailBench 71 3 1
PsdColor 31 3 1

PsdCompose* 31 3 1
PsdImage* 31 3 1
PsdUtil* 31 3 1
Sinatra 84 16 1

ADConvert 8 2 1
ADLoadFile 7 2 1
DeltaBlue 4 3 1
PsychLoad 5 3 1
RedBlack 4 2 1

4.3 Splitting Transitions
There are many possible changes of lookup cache state after
splitting, but ideally it leads to a lower degree of polymor-
phism. Thus, our question is:

Research Question 5. What are the most frequent lookup
cache state transitions after splitting?

Hölzle et al. [9] stated that the aim of splitting is to mono-
morphize polymorphic call-sites. Indeed, Truffle’s heuristic
(see Section 2.3) will mark a method as candidate for splitting
as soon as a lookup cache gains a second entry.

Two cases are therefore possible:
– The clone’s cache contains the same target as the ori-
ginal, which means that the call-site would have re-
mained monomorphic if it had not been split, suggest-
ing the split that occurred was unnecessary;

– The clone’s cache contains a different target, which
means that if splitting had not been triggered, the
cache would have turned polymorphic.

Table 5 shows the frequency of these splitting transitions
for our benchmark set: it displays the number of splitting ac-
tions, and how splitting influenced the lookup cache state of
the split call-sites. Quite unexpectedly column four indicates
that 89% of splitting happens on monomorphic call-sites that
remain monomorphic with the same target after splitting,
which suggests over-splitting may have occurred. We in-
spected several of these cases manually and identified that
they result from recursive splitting (see Section 2.3).

Observation 5. The most common splitting outcome results
in the clone’s cache containing the same entry as the original
cache. In significantly fewer cases splitting prevented a cache

8

55 Copyright © 2022, Oracle and/or its affiliates

