Thread-Safe and Efficient Data Representations in
Dynamically-Typed Languages

Benoit Daloze

Supervisor Prof. Hanspeter Méssenbéck
Second Examiner Dr. Jeremy Singer
Third Examiner Prof. Gabriele Anderst-Kotsis
Prases Prof. Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

15 November 2019

Motivation: Multi-Core Processors Jzu

» Single-core performance no longer improves as it used to.

» The main way to achieve higher CPU performance on a single
machine is to use multi-core processors.

The Multi-Core Era J¥U

Single-Threaded Integer Performance
Bas PECint esults

=d on adjusted

per year

u Intel Xeon

@ Iniel Core
Intel Pentium

4 Intel ltanium

= Intel Celeron
AMD FX

= AMD Opteron
AMD Phenom

* AMD Athlon
|BM POWER

* PowerPC

Fujitsu SPARC

Sun SPARC

DEC Alpha
MIPS

* HP PA-RISC

Figure: SPECint® results over the years. Source:

https://preshing.com/20120208/a-1look-back-at-single-threaded- cpu-performance/

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

The Multi-Core Era J¥U

Single-Threaded Integer Performance

it Xoon
Fag It

Sintel Atom

Figure: SPECint® results until April 2018. Source: nstps:

//preshing.com/20120208/a-look-back-at-single-threaded- cpu-performance/#IDComment1061418665

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665

Problem Statement J¥U

We are in the multi-core era, but:

» Dynamically-typed languages have poor support for parallel
execution (e.g.: Ruby, Python, JavaScript, ...)

> State-of-the-art implementations either sequentialize execution
or lack basic thread-safety, exposing low-level data races of the
VM to the user

» The biggest reason (my interpretation) is their representation
of objects and built-in collections are not thread-safe

Does performance matter in these languages? Jzu

» Many server applications written in Ruby, Python, JavaScript,
etc

» They are run in production, and the cost is linked to how
many resources are used (servers, memory, processing power)

Dynamic Language Implementations JXU

» Global Lock: CRuby, CPython, PyPy, V8, ...
= No shared-memory parallelism in a single process

Dynamic Language Implementations JXU

» Global Lock: CRuby, CPython, PyPy, V8, ...
= No shared-memory parallelism in a single process

» Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
= Significant overhead on single-threaded performance
= Sequentialize all writes to the same object/collection

Dynamic Language Implementations JXU

» Global Lock: CRuby, CPython, PyPy, V8, ...
= No shared-memory parallelism in a single process

» Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
= Significant overhead on single-threaded performance
= Sequentialize all writes to the same object/collection

» Unsafe: JRuby, Rubinius, Nashorn
= Break basic thread-safety like reading/writing to an object
or operations on built-in arrays/dictionaries

Appending concurrently J¥U

array = []

Create 100 threads
100.times.map {
Thread.new {
Append 1000 integers to the array
1000.times { [i|
array << i
b
X
}.each { |thread| thread.join }

puts array.size

Appending concurrently J¥U

CRuby, the reference implementation with a Global Lock:

ruby append.rb
100000

Appending concurrently J¥U

CRuby, the reference implementation with a Global Lock:

ruby append.rb
100000

JRuby, on the JVM with parallel threads:

jruby append.rb
64324

Appending concurrently J¥U

CRuby, the reference implementation with a Global Lock:

ruby append.rb
100000

JRuby, on the JVM with parallel threads:
jruby append.rb

64324

or

ConcurrencyError: invalid array contents due to
unsynchronized modifications with concurrent users
<< at org/jruby/ .java:1256

block at append.rb:8

A workaround

array = []
mutex

.new

100.times.map {
.new {
1000.times { |1l
Add user-level synchonization
mutex.synchronize {
array << i
}
}
b
}.each { |thread| thread.join }

puts array.size

JXU

10

Summary J¥U

State-of-the-art implementations either

» sequentialize important part of the execution or

> violate basic thread-safety guarantees

We need thread-safe and efficient data representations which:

» provide thread-safety guarantees
» have no overhead on single-threaded execution

> enable parallel workloads to scale

11

Challenges J¥U

» How to provide thread-safety guarantees with no
single-threaded overhead?

» How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?

» How to provide efficent, thread-safe and scalable versatile
collections?

12

Scientific Contributions J¥U

> A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

» A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

» A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

» Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.

13

Supporting Publications JXU

» A Powerful Synchronization Mechanism
Techniques and Applications for Guest-Language Safepoints.
B. Daloze, C. Seaton, D. Bonetta, H. Mdssenbdck,
ICOOOLPS 2015.

» A Thread-Safe Object Model
Efficient and Thread-Safe Objects for Dynamically-Typed

Languages. B. Daloze, S. Marr, D. Bonetta, H. Mdssenbdck,
OOPSLA 2016.

» Thread-Safe and Scalable Built-in Collections
Parallelization of Dynamic Languages: Synchronizing Built-in
Collections. B. Daloze, A. Tal, S. Marr, H. Mossenbock, E.
Petrank, OOPSLA 2018.

14

Additional Publications J¥U

» Cross-Language Compiler Benchmarking: Are We Fast Yet?
S. Marr, B. Daloze, H. Mossenbock, DLS 2016.

» Few Versatile vs. Many Specialized Collections: How to
Design a Collection Library for Exploratory Programming?
S. Marr, B. Daloze, PX/18.

» Specializing Ropes for Ruby
K. Menard, C. Seaton, B. Daloze, ManLang'18.

15

Outline J¥U

Single-Threaded Performance and Thread-Safe Objects
Thread-Safe and Scalable Collections

Conclusion

16

Outline J¥U

Single-Threaded Performance and Thread-Safe Objects

17

|dea: Distinguishing Local and Shared J¥U

Idea: Only synchronize objects which need it:
» Objects reachable by only 1 thread need no synchronization

» Objects reachable by multiple threads need synchronization

18

Local and Shared Objects: Reachability J!U

Thread 1

Thread 2

19

Local and Shared Objects: Reachability J!U

Thread 1

Thread 2

20

Local and Shared Objects: Reachability J¥U

Thread 1

Thread 2

21

Tracking the set of shared objects J¥U

> All globally-reachable objects are shared when a second thread
is created

» Write to shared object = share value, transitively

Share 1 Array, 1 Object, 1 Hash and 1 String
shared_obj.field = [.new, { "a" => 1 }]

22

No Overhead? J¥U

Pseudo code to write a value to a field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (isShared(object)) {
// use synchronization
} else {
// direct access

23

The Truffle Object Storage Model

shape

Shape

transitions

42
-5

X: int@1

y: int@2

shape

22

-33

JXU

An Object Storage Model for the Truffle Language Implementation Framework
A. W6B, C. Wirth, D. Bonetta, C. Seaton, C. Humer & H. Méssenbéck, 2014. 24

The Truffle Object Storage Model

z=27
]]
Shape +7 Shape shape
transitions T transitions 42
X: int@1 X: int@1 -5
y: int@2 y: int@2 27
- z: int@3
shape
22
-33

An Object Storage Model for the Truffle Language Implementation Framework
A. W6B, C. Wirth, D. Bonetta, C. Seaton, C. Humer & H. Méssenbéck, 2014.

25

Updating an existing field with Shapes Jzu

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {

if (object.shape == CACHED_SHAPE) {
object [CACHED_OFFSET] = value;

} else {
transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_OFFSET = CACHED_SHAPE.getOffset(field);
write(object, field, value);

26

Tracking Sharing in the Shape

Efficient and Thread-Safe Objects for Dynamically-Typed Languages
B. Daloze, S. Marr, D. Bonetta, H. Méssenbéck, OOPSLA 2016.

shape Shape

42 transitions
-5 X: int@1
y: int@2

JXU

27

Tracking Sharing in the Shape

shape

Shape

—
-

42

transitions

=
-
e
-

X: int@1

y: int@2

JXU

Shape

transitions

X: int@1

y: int@2

Shapes are checked for every field access and method call
= No cost to know if an object is shared

Updating an existing field with Shapes Jzu

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (object.shape == CACHED_SHAPE) {
if (SHARED_SHAPE) {
// use synchronization
} else {
object [CACHED_OFFSET] = value;
}
} else {
transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_QFFSET = CACHED_SHAPE.getOffset(field);
SHARED_SHAPE = CACHED_SHAPE.isSharedShape() ;
}
}

29

Single-Threaded Performance for Objects JXU

Peak performance, normalized to Unsafe, lower is better

5 5. ' Unsafe E5 Safe E3 All Shared —
2.0- _ ——
151 ; -
s R
0.5+
00 T T T T T i T T
Bounce DeltaBlue JSON List NBody Richards Towers

All Shared synchronizes on all object field writes.

All object-related benchmarks from Cross-Language Compiler Benchmarking:
Are We Fast Yet? S. Marr, B. Daloze, H. Méssenbéck, 2016. 30

Extending Sharing to Collections J¥U

» We need to synchronize on collections too, e.g., to avoid
append races

» Collections are objects, they can track sharing in the Shape too
» Shared collections use a write barrier when adding an element
to the collection
shared_array[3] = .new

shared_hash["foo"] = "bar"

» Collections can change their representation when shared

31

Single-Threaded Performance for Collections Jzu

Peak performance, normalized to TruffleRuby, lower is better

1.4

1.3

ZTH | BAETRLLSTRI NIRRT

.9 T T
Bounce L\st Mandelbrot NBody Permute Queens S\eve Slorage Towers DeltaB\ue Json Rlchards

Benchmark

TruffleRuby E TruffleRuby with Concurrent Collections

No difference because these benchmarks do not use shared collections.

Benchmarks from Cross-Language Compiler Benchmarking: Are We Fast Yet?
S. Marr, B. Daloze, H. Méssenbéck, 2016.

32

Thread-Safe and Scalable Collections J¥U

Thread-Safe and Scalable Collections

33

Focus on Built-in Collections JXU

» Built-in collections are the most used (array/list, map, set)

» Built-in collections are thread-safe with a global lock
= we want to preserve this thread-safety

» User-defined collections are unknown to language
implementations, so they cannot guarantee thread-safety

34

Ruby built-in collections J¥U

» Array (a stack, a queue, a deque, set-like operations)

» Hash (compare keys by #hash + #eql? or by identity,
maintains insertion order)

That's alll

35

Array storage strategies J ¥ U

store int empty store double

store long store Object store Object

~— A A
int[] long[] Object[] double[]

store Object

class RubyArray { storage:
// null, int[], longl], array = [] # empty
// double[] or Object[] array << 1 # nt[]
Object storage; array << 2x*42 # long/[]

¥ array << "foo" # Object/[]

Storage Strategies for Collections in Dynamically Typed Languages
C.F. Bolz, L. Diekmann & L. Tratt, OOPSLA 2013.

36

Concurrent Array Strategies J ¥ U

g store int empty store double ~ S
)
g : \\
< store long store Object store Object \
k7 —— A —— A oA~ \
go ‘ int[] ‘ ‘ long[] ‘ ‘ Object[ﬂ ‘ double[] ‘ \
S r_—> P !
k7 store Object | 7 - \
| 7/ -
[7/ >~ |
A v , - \4
=, SharedFixedStorage % e SharedDynamicStorage
0.2 int[] - empty
E %D ‘ 1ongrL] —a T
o R \ aoubIel] [intf1 | [longll | [objectl1] [doubler]]
5 < \ UDJecTL] ——
|9}

internal storage change: <<, delete, etc

<— storage transition
< — onsharing

37

SharedFixedStorage J¥U

» Assumes the storage (e.g. int[16]) does not need to change
= Array size and type of the elements fits the storage

> If so, the Array can be accessed without any synchronization,
in parallel and without any overhead (except the write barrier)

38

Migrating to SharedDynamicStorage JXU

» What if we need to change the storage?
$array = [1, 2, 3] # SharedFizedStorage(int[3])
Migrate to SharedDynamicStorage
$array[1] = .new
$array << 4
$array.delete_at (1)

» We use a Guest-Language Safepoint to migrate to
SharedDynamicStorage. Once all threads reach the safepoint,
we change the strategy to SharedDynamicStorage.

Techniques and Applications for Guest-Language Safepoints
B. Daloze, C. Seaton, D. Bonetta, H. Méssenbéck, ICOOOLPS 2015.

39

SharedDynamicStorage J¥U

» SharedDynamicStorage uses a lock to synchronize operations

» To keep scalability when writing on different parts of the
Array, an exclusive lock or a read-write lock is not enough

» We use a Layout Lock

40

Layout Lock J¥U

» 3 access modes: reads, writes and layout changes (storage
changes, such as int [] to Object[])

» Enables parallel reads and writes

» Layout changes execute exclusively and block reads and writes

41

Scalability of Array Reads and Writes J¥U

8 100% reads 90% reads, 10% writes

o 30

)

Q. 30

%]

Q

@ 20

I 20

S o*

z 10+ ././

E (::-kll—-lml_l’"'"‘“’n’n

S o44EE

@ 124 8 121620 24 28 32 36 40 44 124 8 121620 24 28 32 36 40 44
Threads

—o— SharedFixedStorage —#— LightweightLayoutLock —&— StampedLock Local

VolatileFixedStorage LayoutLock ReentrantLock

42

NAS Parallel Benchmarks

JXU

BT-W

CG-B

FT-A

LU-W

MG-A

Scalability relative to 1 thread performance

Z

—
N
N
o
o o

10121416

—_
N
~d
o4
oo -

-4 Concurrent Strategies

10121416

Threads

TruffleRuby -= Java

12 4 6 8 10121416

Fortran

12 4 6 810121416

43

Conclusion Jzu

Conclusion

44

Challenges and Solutions J¥U

» How to provide thread-safety guarantees with no
single-threaded overhead?

» By tracking reachability of objects and collections, and only
synchronize on shared objects and collections

» How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?

» By extending Self maps with an extra “shared” field and only
synchronizing for shared object writes

» How to provide efficent, thread-safe and scalable versatile
collections?

» By using reachability, a new lock, and dynamically changing
the representation based on which operations are used.

45

Limitations and Future Work JXU

» Shared object field writes are serialized on a given object

» Guest-Language Safepoints currently deoptimize and cause
recompilation

» We evaluated for dynamic languages, but some ideas apply to
statically-typed languages too

» Explore if other thread-safety guarantees provided by the GIL
are useful for users

46

Conclusion Jzu

» Synchronizing dynamically based on reachability is a good way
to avoid overhead on single-threaded performance

» Objects and built-in collections in dynamic languages can be
made thread-safe, efficient and scalable

» We enable parallel programming for dynamic languages, using
the existing objects and built-in collections

47

Summary

Tracking reachability

Thread 1

Thread 2

Thread-Safe Scalable Collections

"""

store Object

store long store Object.

storage strategies

PR SharedDynamicStorage
ShIeTT

concurrent
strategies

internal storage change: <<, delete, etc

Thread-Safe Efficient Object Model

JXU

Scalability relative to 1 thread performance

shape Shape __Sp—a‘r—e_g’ Shape
42 transitions / transitions
-5 x: int@1 x:int@l
y: int@2 y: int@2

Scalable Dynamic Languages

BTW £ EZ A
iS¢ SPW
1246810121416 12 4 6 610121416 12 4 6 § 10121416 12 4 6 & 10121416

- Concurrent Strategies

Threads

TruffleRuby = Java - Fortran

48

Thread-Safe and Efficient Data Representations in
Dynamically-Typed Languages

Benoit Daloze

Supervisor Prof. Hanspeter Méssenbéck
Second Examiner Dr. Jeremy Singer
Third Examiner Prof. Gabriele Anderst-Kotsis
Prases Prof. Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

15 November 2019

Scientific Contributions Summary JXU

» Guest-Language Safepoints

> A general approach for efficient synchronization based on
reachability

» A thread-safe and efficient object model for dynamic languages

» A thread-safe and scalable design for collections in dynamic
languages

Together, they enable shared-memory dynamically-typed languages
to run in parallel with thread-safe and efficient data representations

50

Scientific Contributions J¥U

» A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

» A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

> A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

» Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.

Comparison to PyPy-STM (Meier et al., 2018)

This thesis

JXU

PyPy-STM

Thread-safety guarantees

Thread-safe objects and
collections

Sequential consistency

Sequential performance

Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

30% slower than GIL
(geom.avg. of 10 benchs)

x
x <
=

Parallel speedup

8x faster on 8 threads
(20x faster on 22 threads)
for PyPy-STM mandelbrot

32 - -# Concurrent Strategies

28 4 TruffleRuby /'/‘*

24 4

20 4
16 4

12
8 4 P

4

Scalability Factor

124 8 12 16 20 24 28 32 36 40 44
Threads

1.5x - 6.9x (2.46x geom.
avg.) faster on 8 threads
than GIL 1 thread

52

Comparison to Ruby-HTM (Odaira et al., 2014) JXU

This thesis

Ruby-HTM

Thread-safety guarantees

Thread-safe objects and
collections

Sequential consistency

Sequential performance

Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

> 25% slower than GIL on
each NPB benchmark

Max parallel speedup on
NPB FT benchmark

Ox faster on 12 threads

12 4 6 8 10121416

4.5x faster on 12 threads
than GIL 1 thread

FT

0.5

012345867 8 9 101112

53

Thread Safety Requirements (1-4) J¥U

Example GIL Goal Unsafe

Initial: array = [0, 0] [1, 21 [1, 2] [1, 2]
array([0] = 1 [array[1] =
Result: print array

N

Initial: array = [0, 0] ["s", 2] ["s", 2] ["s", 2]

array[0] = "s" l array[1] = 2 ["s", 0]
Result: print array
Initial: array = [] [1, 2] [1, 2] [1, 2]
array << 1 [array << 2 [2, 1] [2, 1] [2, 1]
Result: print array [11/[2]
exception
Initial: hash = {} {a:1, b:2} A{a:1, b:2} {a:1, b:2}
hash[:a] = 1 l hash[:b] = 2 {b:2, a:1} {b:2, a:1} {b:2, a:1}
Result: print hash {a:1}/{b:2}
{a:2}/{b: 1}
exception

54

Thread Safety Requirements (5-7) JXU

Example GIL Goal Unsafe
Initial: a = [0, 0]; result = -1 1 1 1
al0] = 1 | wait() until a[l1] == 0 0

all] = 2 | result = al0]
Result: print result

key = .new; h = {key => 0} 2
hikeyl += 1 | hlkey] += 1 1 1 1
Result: print hlkey]

Initial: array = [1] 1 1 1
array = [2] ‘ print arrayl[0]

N

55

	Single-Threaded Performance and Thread-Safe Objects
	Thread-Safe and Scalable Collections
	Conclusion

